Communications System Toolbox™
User's Guide

A

MATLAB&SIMULINK

R2017a <} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Communications System Toolbox™ User's Guide

© COPYRIGHT 2011-2017 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 5.0 (Release 2011a)

Revised for Version 5.1 (Release 2011b)
Revised for Version 5.2 (Release 2012a)
Revised for Version 5.3 (Release 2012b)
Revised for Version 5.4 (Release 2013a)
Revised for Version 5.5 (Release 2013b)
Revised for Version 5.6 (Release 2014a)
Revised for Version 5.7 (Release 2014b)
Revised for Version 6.0 (Release 2015a)
Revised for Version 6.1 (Release 2015b)
Revised for Version 6.2 (Release 2016a)
Revised for Version 6.3 (Release 2016b)
Revised for Version 6.4 (Release 2017a)

Contents

Input, Output, and Display

1

Signal Terminology 1-2
Matrices, Vectors, and Scalars 1-2
Export Data to MATLAB 1-3
Use a Signal To Workspace Block 1-3
Configure the Signal To Workspace Block 1-3
View Error Rate Data in Workspace 14
Send Signal and Error Data to Workspace 1-4
View Signal and Error Data in Workspace 1-5
Analyze Signal and Error Data 1-6
Sources and Sinks 1-7
Data sources 1-7
NOISE SOUTCES .+ v v v vttt et e et 1-10
Sequence Generatorsc.uuiiii. 1-11
S COPES © i 1-13
View a Sinusoidt 1-14
View a Modulated Signal 1-17
Read Signals From Hardware Devices 1-25

Transmit and Receive Signals Over the Air with Software
Defined Radios 1-26

Data and Signal Management

2|

Matrices, Vectors, and Scalars 2-2
Processing Rules 2-2

vi

Contents

Sample-Based and Frame-Based Processing 2-4

Floating-Point and Fixed-Point Data Types 2-5
Access the Block Support Table 2-5
Delays 2-6
Section OVErvIEeW v vttt ittt 2-6
Sources of Delays 2-7
ADSL Example Model 2-7
Punctured Coding Model 2-9
Use the Find Delay and Align Signals Blocks 2-12

Digital Modulation

3|

Phase Modulation 3-2
Baseband and Passband Simulation 3-3
BPSK .. 3-4
QPSK .. 3-6
Higher-Order PSK 3-10
DPSK . . e 3-12
OQPSK e 3-13
Soft-Decision Demodulation 3-16

Featured Examples

4

Compensate for Frequency Offset Using Coarse and Fine

Compensation 4-2
Correct for Symbol Timing and Doppler Offsets 4-7
Estimate Turbo Code BER Performance in AWGN 4-12
Random Noise Generators 4-16
Visualize Effects of Frequency-Selective Fading 4-21

Correct Frequency Offset QAM Using Coarse and Fine
Synchronization 4-39

Adjust Carrier Synchronizer Damping Factor to Correct

Frequency Offset 4-44
Modulate and Demodulate 8-PSK Signal 4-49
Binary to Gray Conversion in Simulink 4-52
Read Baseband Signal from File 4-53
Write Baseband Signalto File 4-56
Detect Binary Preamble in Packet 4-58
Detect Complex Preamble in Packet 4-59

Adaptive Equalizer Examples

S|

Adaptive Equalization 5-2
Adaptive Equalization 5-13
Structure of the Example 5-13
Experimenting with the Example 5-14
Results and Displays 5-15
Selected Bibliography 5-23
Equalize BSPK Signal 5-25
Compare RLS and LMS Algorithms 5-29

vii

viii

Contents

System Design

6/

Source Coding

Represent Partitions
Represent Codebooks

Determine Which Interval Each Input Is In

Optimize Quantization Parameters
Differential Pulse Code Modulation
Optimize DPCM Parameters
Compand a Signal

Huffman Coding
Arithmetic Coding
Quantize a Signal

Error Detection and Correction

Cyclic Redundancy Check Codes
Block Codes
Convolutional Codes
Linear Block Codes
Hamming Codes
BCH Codes
Reed-Solomon Codes
LDPC Codes
Galois Field Computations
Galois Fields of Odd Characteristic

Interleaving

Block Interleaving
Convolutional Interleaving

Selected Bibliography for Interleaving

Digital Modulation
Digital Modulation Features
Signals and Delays
PM Modulation
AM Modulation
CPM Modulation
Exact LLR Algorithm
Approximate LLR Algorithm

Delays in Digital Modulation

Selected Bibliography for Digital Modulation

6-2

6-3
6-3

6-5
6-7

6-10
6-12
6-13

6-15
6-15
6-19
6-37
6-69
6-79
6-88
6-95
6-106
6-106
6-137

6-153
6-153
6-158
6-170

6-171
6-171
6-177
6-186
6-187
6-193
6-196
6-197
6-197
6-199

Analog Passband Modulation

Analog Modulation Features

Represent Signals for Analog Modulation

Sampling Issues in Analog Modulation

Filter Design Issues

Phase-Locked Loops

Phase-Locked Loop Features

Selected Bibliography for Synchronization

Equalization
Equalization Features
Equalize A Signal

Equalizer Structure

Adaptive Algorithms

MLSE Equalizers
Selected Bibliography for Equalizers . .

Multiple-Input Multiple-Output (MIMO)

Orthogonal Space-Time Block Codes (OSTBC)

MIMO Fading Channel
MIMO Examples

OSTBC Over 3x2 Rayleigh Fading Channel
Selected Bibliography for MIMO systems

Huffman Coding

Create a Huffman Code Dictionary . . .
Create and Decode a Huffman Code . .

Differential Pulse Code Modulation . ..

Section Overview
DPCM Terminology

Represent Predictors

Example: DPCM Encoding and Decoding

Optimize DPCM Parameters

Compand a Signal

Quantize and Compand an Exponential Signal

Arithmetic Coding

Represent Arithmetic Coding Parameters

Create and Decode an Arithmetic Code

6-201
6-201
6-202
6-205
6-205

6-208
6-208
6-210

6-212
6-212
6-213
6-214
6-221
6-238
6-245

6-247
6-247
6-248
6-248
6-249
6-252

6-254
6-254
6-255

6-257
6-257
6-257
6-257
6-258
6-259

6-261
6-261

6-263

6-263
6-263

ix

X

Contents

Quantization 6-265

7]

Represent Partitions 6-265
Represent Codebooks 6-265
Determine Which Interval Each Input IsIn 6-266
Optimize Quantization Parameters 6-266
Quantize a Signal 6-268
OFDM Modulation

OFDM with User-Specified Pilot Indices 7-2
SER Simulation for OFDM Link 7-7
OFDM with MIMO Simulation 7-10
Gray Coded 8-PSK 7-15
Introduction 7-15
Initialization 7-17
Stream Processing Loop 7-19
Cleanupo i e 7-20
Conclusions e 7-20
Configure Eb/No for AWGN Channels with Coding 7-23
CPM Phase Tree 7-25
Structure of the Example 7-25
Results and Displays 7-26
Exploring the Example 7-28
Filtered QPSK vs. MSK 7-29
Structure of the Example 7-29
Results and Displays 7-30
GMSK vs. MSK e 7-33
Structure of the Example 7-33
Results and Displays 7-34
GMSK vs. MSK e 7-37

Gray Coded 8-PSK 7-43

Structure of the Example 7-43
Gray-Coded M-PSK Modulation 7-44
Exploring the Example 7-46
Simulation Results 7-47
Comparison with Pure Binary Coding and Theory 7-48

Soft Decision GMSK Demodulator 7-49
Structure of the Example 7-49

The Serial GMSK Receiver 7-50
Results and Displays 7-51
16-PSK with Custom Symbol Mapping 7-56
General QAM Modulation in an AWGN Channel 7-60
FM Modulate and Demodulate a Sinusoidal Signal 7-63
Modulate and Demodulate a Streaming Audio Signal 7-66
MSK

MSK Signal Recovery, 8-2
MSK Signal Recovery 8-11
Exploring the Model 8-11
Results and Displays 8-12
Experimenting with the Example 8-15

Reed-Solomon Coding

9

Reed-Solomon Coding Part I - Erasures 9-2

Reed-Solomon Coding Part II — Punctures 9-8

xi

Reed-Solomon Coding Part III - Shortening

Reed-Solomon Coding with Erasures, Punctures, and

Shortening
Decoding with Receiver Generated Erasures
Simulation and Visualization with Erasures Only
BER Performance with Erasures Only
Simulation with Erasures and Punctures
BER Performance with Erasures and Punctures
Specifying a Shortened Code
Simulation with Erasures, Punctures, and Shortening
BER Performance with Erasures, Punctures, and Shortening
Further Exploration

Estimate LDPC Performance in AWGN
Character Representation of Polynomials

Estimate BER of 8-PSK in AWGN with Reed-Solomon
Coding e

Transmit and Receive Shortened Reed-Solomon Codes . . .

9-14

9-20
9-20
9-21
9-24
9-25
9-26
9-26
9-27
9-27
9-28

9-29

9-31

9-32

9-35

Galois Fields

10|

Working with Galois Fields
Creating Galois Field Arrays
Using Galois Field Arrays
Arithmetic in Galois Fields
Using MATLAB® Functions with Galois Arrays
Hamming Code Example

10-2
10-2
10-2
10-3
10-4
10-5

Convolutional Coding

11

Punctured Convolutional Coding

xii Contents

Iterative Decoding of a Serially Concatenated Convolutional

Code 11-8
Exploring the Example 11-8
Variables in the Example 11-9
Creating a Serially Concatenated Code 11-10
Convolutional Encoding Details 11-10
Decoding Using an Iterative Process 11-11
Computations in Each Iteration 11-11
Results of the Iterative Loop 11-12
Results and Displays 11-12

Punctured Convolutional Encoding 11-14
Structure of the Example 11-14
Generating Random Data 11-15
Convolutional Encoding with Puncturing 11-15
Transmitting Data 11-16
Demodulating 11-16
Viterbi Decoding of Punctured Codes 11-16
Calculating the Error Rate 11-17
Evaluating Results 11-17

Rate 2/3 Convolutional Code in AWGN 11-21

Estimate BER for Hard and Soft Decision Viterbi
Decoding 11-24

Channel Modeling and RF Impairments

12|

AWGN Channel i 12-2
Section OVErvIEWottt it et e 12-2
AWGN Channel Noise Level 12-2

Fading Channels 12-5
Overview of Fading Channels 12-5
Methodology for Simulating Multipath Fading Channels: . . 12-8
Specify Fading Channels 12-12
Specify Doppler Spectrum of Fading Channel 12-16
Configure Channel Objects 12-20
Use Fading Channels 12-23

xiii

xiv

Contents

Rayleigh Fading Channel 12-24

Rician Fading Channel 12-43
Additional Examples Using Fading Channels 12-45
MIMO Channel 0. 12-47
WINNER IT Channel 12-48

Mapping of WINNER II Open Source Download to WINNER II

13

Channel Model for Communications System Toolbox . . 12-49
RF Impairments 12-52
Ilustrate RF Impairments That Distort a Signal 12-52
Phase/Frequency Offsets and Phase Noise 12-56
Receiver Thermal Noise and Free Space Path Loss 12-56
Nonlinearity and I/Q Imbalance 12-57
Apply Nonlinear Distortion to Input Signal 12-57
Simulate RF Impairments to a DQPSK Signal 12-58
View Phase Noise Effects on Signal Spectrum 12-61
Selected Bibliography for Channel Modeling 12-64
Measurements

Bit Exrror Rate (BER) 13-2
Theoretical Results 13-2
Performance Results via Simulation 13-24
Performance Results via the Semianalytic Technique 13-27
Theoretical Performance Results 13-30
Error Rate Plots 13-34
BERToo0l e e 13-39
Error Rate Test Console 13-86
Error Vector Magnitude (EVM) 13-121
Measuring Modulator Accuracy 13-121
Modulation Error Ratio MER) 13-126
Adjacent Channel Power Ratio (ACPR) 13-127
Obtain ACPR Measurements 13-127

Complementary Cumulative Distribution Function CCDF 13-135

Selected Bibliography for Measurements 13-136

Filtering Section

14

Filtering e 14-2
Filter Features 14-2
Selected Bibliography Filtering 14-4

Group Delay 14-5
Implications of Delay for Simulations 14-5

Pulse Shaping Using a Raised Cosine Filter 14-7

Design Raised Cosine Filters Using MATLAB Functions . 14-13
Section OVErvIEW ov vttt ittt nns 14-13
Example Designing a Square-Root Raised Cosine Filter . . 14-13

Filter Using Simulink Raised Cosine Filter Blocks 14-15
Combining Two Square-Root Raised Cosine Filters 14-15

Design Raised Cosine Filters in Simulink 14-21

Reduce ISI Using Raised Cosine Filtering 14-24

Find Delay for Encoded and Filtered Signal 14-29

Visual Analysis

15

Constellation Visualization 15-2
Observe Modulator Design Affect Signal Constellation 15-2
Plot Signal Constellations 15-9
Create 16-PSK Constellation Diagram 15-9

Xv

xvi

Create 32-QAM Constellation Diagram 15-10

Create 8-QAM Gray Coded Constellation Diagram 15-11
Plot a Triangular Constellation for QAM 15-12
Eye Diagram Analysis 15-15
Import Eye Diagrams and Compare Measurement Results 15-15
Scatter Plots and Constellation Diagrams 15-21
View Signals Using Constellation Diagrams 15-21
Channel Visualization 15-29
The Channel Visualization GUI 15-30
Visualize Samples Within a Frame 15-41
Animate Snapshots Across Frames 15-41
Visualize RF Impairments 15-43

C Code Generation

16

Understanding C Code Generation 16-2
C Code Generation with the Simulink Coder Product 16-2
Highly Optimized Generated ANSIC Code 16-2

C Code Generation from MATLAB 16-4
What is C Code Generation from MATLAB? 16-4

C Code Generation with System Objects and Functions . .. 16-5

HDL Code Generation

17

Contents

HDL Code Generation Support for Communications System

Toolbox e 17-2
Blocks e 17-2
System Objects i 17-3

Find Blocks and System Objects Supporting HDL Code

Generation

Blocks
System Objects

Simulation Acceleration

18

Simulation Acceleration Using GPUs
GPU-Based System objects

General Guidelines for Using GPUs

Transmit and decode using BPSK modulation and turbo

coding
Process Multiple Data Frames Using a GPU . .

Process Multiple Data Frames Using NumFrames Property
gpuArray and Regular MATLAB Numerical Arrays

Pass gpuArray asan Input
System Block Support for GPU System Objects

18-2
18-2
18-3

18-3
18-4
18-5
18-6
18-7
18-7

xvil

Input, Output, and Display

Learn how to input, output and display data and signals with Communications System
Toolbox.

“Signal Terminology” on page 1-2

“Export Data to MATLAB” on page 1-3

“Sources and Sinks” on page 1-7

“Read Signals From Hardware Devices” on page 1-25

“Transmit and Receive Signals Over the Air with Software Defined Radios” on page
1-26

1

Input, Output, and Display

Signal Terminology

This section defines important Communications System Toolbox terms related to
matrices, vectors, and scalars, as well as frame-based and sample-based processing.

Matrices, Vectors, and Scalars

This document uses the unqualified words scalar and vector in ways that emphasize a
signal's number of elements, not its strict dimension properties:

* A scalar signal contains a single element. The signal could be a one-dimensional array
with one element, or a matrix of size 1-by-1.

* A vector signal contains one or more elements, arranged in a series. The signal
could be a one-dimensional array, a matrix that has exactly one column, or a matrix
that has exactly one row. The number of elements in a vector is called its length or,
sometimes, its width.

In cases when it is important for a description or schematic to distinguish among
different types of scalar signals or different types of vector signals, this document
mentions the distinctions explicitly. For example, the terms one-dimensional array,
column vector, and row vector distinguish among three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns
the matrix has. The orientation of a two-dimensional vector is its status as either a row
vector or column vector. A one-dimensional array has no orientation — this is sometimes
called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full
matrix signal.

Export Data to MATLAB

Export Data to MATLAB

In this section...

“Use a Signal To Workspace Block” on page 1-3
“Configure the Signal To Workspace Block” on page 1-3
“View Error Rate Data in Workspace” on page 1-4
“Send Signal and Error Data to Workspace” on page 1-4
“View Signal and Error Data in Workspace” on page 1-5

“Analyze Signal and Error Data” on page 1-6

Use a Signal To Workspace Block

This section explains how to send data from a Simulink® model to the MATLAB®
workspace so you can analyze the results of simulations in greater detail.

You can use a Signal To Workspace block, from the Sinks library of the DSP System
Toolbox™ product to send data to the MATLAB workspace as a vector. For example,
you can send the error rate data from the Hamming code model, described in the section
“Reduce the Error Rate Using a Hamming Code” on page 6-80. To insert a Signal to
Workspace block into the model, follow these steps:

1 To open the model, at the MATLAB prompt, enter doc_hamming.

2 Drag a Signal To Workspace block, from the Sinks library in the DSP System
Toolbox product, into the model window and connect it as shown in the following

figure.

Signal To
o kspace

Hamming Code Model with a Signal To Workspace Block

Configure the Signal To Workspace Block

To configure the Signal to Workspace block, follow these steps:

1-3

1

Input, Output, and Display

1-4

Double-click the block to display its dialog box.
2 Type hammcode_ BER in the Variable name field.

Type 1 in the Limit data points to last field. This limits the output vector to the
values at the final time step of the simulation.

4 Click OK.

When you run a simulation, the model sends the output of the Error Rate Calculation
block to the workspace as a vector of size 3, called hamming_BER. The entries of this
vector are the same as those shown by the Error Rate Display block.

View Error Rate Data in Workspace

After running a simulation, you can view the output of the Signal to Workspace block by
typing the following commands at the MATLAB prompt:

format short e
hammcode_BER

The vector output is the following:

hammcode_BER =
5.4066e-003 1.0000e+002 1.8496e+004

The command format short e displays the entries of the vector in exponential form.
The entries are as follows:

* The first entry is the error rate.

* The second entry is the total number of errors.

* The third entry is the total number of comparisons made.

Send Signal and Error Data to Workspace

To analyze the error-correction performance of the Hamming code, send the transmitted
signal, the received signal, and the error vectors, created by the Binary Symmetric
Channel block, to the workspace. An example of this is shown in the following figure.

Export Data fo MATLAB

Send Signal and Error Data to the Workspace

1

To open the model shown in the previous figure, type doc_channel at the MATLAB
command line.

Double-click the Binary Symmetric Channel block to open its dialog box, and select
Output error vector. This creates an output port for the error data.

Drag three Signal To Workspace blocks, from the Sinks library in the DSP System
Toolbox product, into the model window and connect them as shown in the preceding
figure.

Double-click the left Signal To Workspace block.
+ Type Tx in the Variable name field in the block's dialog box. The block sends the
transmitted signal to the workspace as an array called Tx.

* In the Frames field, select Log frames separately (3-D array). This
preserves each frame as a separate column of the array TX.

Click OK.
Double-click the middle Signal To Workspace block:

+ Type errors in the Variable name field.
In the Frames field, select Log frames separately (3-D array).
Click OK.

Double-click the right Signal To Workspace block:

Type Rx in the Variable name field.
In the Frames field, select Log frames separately (3-D array).
+ Click OK.

View Signal and Error Data in Workspace

After running a simulation, you can display individual frames of data. For example, to
display the tenth frame of Tx, at the MATLAB prompt type

1-5

1

Input, Output, and Display

1-6

™>(:,:,10)

This returns a column vector of length 4, corresponding to the length of a message word.
Usually, you should not type TX by itself, because this displays the entire transmitted
signal, which is very large.

To display the corresponding frame of errors, type
errors(:,:,10)
This returns a column vector of length 7, corresponding to the length of a codeword.

To display frames 1 through 5 of the transmitted signal, type

™>(:,:,1:5)

Analyze Signal and Error Data

You can use MATLAB to analyze the data from a simulation. For example, to identify the
differences between the transmitted and received signals, type

diffs = Tx~=Rx;

The vector di Ffs is the XOR of the vectors TX and RX. A 1 in di fFs indicates that Tx
and Rx differ at that position.

You can determine the indices of frames corresponding to message words that are
incorrectly decoded with the following MATLAB command:

error_indices = find(diffs);

A 11in the vector not_equal indicates that there is at least one difference between the
corresponding frame of Tx and Rx. The vector error_indices records the indices where
Tx and Rx differ. To view the first incorrectly decoded word, type

Tx(:,:,error_indices(l))
To view the corresponding frame of errors, type
errors(:,:,error_indices(l))

Analyze this data to determine the error patterns that lead to incorrect decoding.

Sources and Sinks

Sources and Sinks

Communications System Toolbox provides sinks and display devices that facilitate
analysis of communication system performance. You can implement devices using either
System objects, blocks, or functions.

In this section...

“Data sources” on page 1-7

“Noise Sources” on page 1-10
“Sequence Generators” on page 1-11
“Scopes” on page 1-13

“View a Sinusoid” on page 1-14

“View a Modulated Signal” on page 1-17

Data sources

You can use blocks or functions to generate random data to simulate a signal source.

In addition, you can use Simulink blocks such as the Random Number block as a data
source. You can open the Random Data Sources sublibrary by double-clicking its icon
(found in the Comm Sources library of the main Communications System Toolbox block
library).

Random Symbols

The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you specify. A
special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries are
independently chosen and uniformly distributed in the set {1,3,5}. (Your results might
vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])
a =
3 5 1 5
1 5 3 3
1 3 3 1
1 1 3 5

1

Input, Output, and Display

3 1 1 3

If you want 1 to be twice as likely to occur as either 3 or 5, use the command below to
prescribe the skewed distribution. The third input argument has two rows, one of which
indicates the possible values of b and the other indicates the probability of each value.

b

randsrc(5,4,[1,3,5; .5,.25,.25])

b =

WR PP W
P WORW
WR R RO
P WR PR

Random Integers

In MATLAB, the randi function generates random integer matrices whose entries are in
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing random integers
between 2 and 10.

¢ = randi(][2,10],5,4)

C =
2 4 4 6
4 5 10 5
9 7 10 8
5 5 2 3
10 3 4 10

If your desired range is [0,10] instead of [2,10], you can use either of the commands
below. They produce different numerical results, but use the same distribution.

d
e

randi([0,10],5,4);
randi ([0 10],5,4);

In Simulink, the Random Integer Generator and Poisson Integer Generator blocks
both generate vectors containing random nonnegative integers. The Random Integer
Generator block uses a uniform distribution on a bounded range that you specify in
the block mask. The Poisson Integer Generator block uses a Poisson distribution to
determine its output. In particular, the output can include any nonnegative integer.

Sources and Sinks

Random Bit Error Patterns

In MATLAB, the randerr function generates matrices whose entries are either 0 or 1.
However, its options are different from those of randi, because randerr is meant for
testing error-control coding. For example, the command below generates a 5-by-4 binary
matrix, where each row contains exactly one 1.

f = randerr(5,4)

f =

orooo
ocooroo
ROoOOPRR
coocoocoo

You might use such a command to perturb a binary code that consists of five four-bit
codewords. Adding the random matrix f to your code matrix (modulo 2) introduces
exactly one error into each codeword.

On the other hand, to perturb each codeword by introducing one error with probability
0.4 and two errors with probability 0.6, use the command below instead.

% Each row has one "1" with probability 0.4, otherwise two "1°s
g = randerr(5,4,[1,2; 0.4,0.6])

g:

OFr OO0
RPOORR
PR RO
OO0ORr OO

Note: The probability matrix that is the third argument of randerr affects only the
number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element column
vector using any of the commands below. The three commands produce different
numerical outputs, but use the same distribution. The third input arguments vary
according to each function's particular way of specifying its behavior.

1 Input, Output, and Display

binarymatrixl = randsrc(100,1,[0 1]); % Possible values are 0O,1.
binarymatrix2 = randi([0O 1],100,1); % Two possible values
binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1

In Simulink, the Bernoulli Binary Generator block generates random bits and is
suitable for representing sources. The block considers each element of the signal to be an
independent Bernoulli random variable. Also, different elements need not be identically
distributed.

Noise Sources

Construct noise generator blocks in Simulink to simulate communication links.

Random Noise Generators

You can construct random noise generators to simulate channel noise by using the
MATLAB Function block with random number generating functions. Construct different
types of channel noise by using the following combinations.

Distribution Block Function
Gaussian MATLAB Function randn
Rayleigh MATLAB Function randn
Rician MATLAB Function randn
Uniform on a bounded MATLAB Function rand
interval

See “Random Noise Generators” on page 4-16 for an example of how Rayleigh and
Rician distributed noise is created.

Gaussian Noise Generator

In MATLAB, the wgn function generates random matrices using a white Gaussian noise
distribution. You specify the power of the noise in either dBW (decibels relative to a
watt), dBm, or linear units. You can generate either real or complex noise.

For example, the command below generates a column vector of length 50 containing
real white Gaussian noise whose power is 2 dBW. The function assumes that the load

impedance is 1 ohm.

1-10

Sources and Sinks

yl = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a load of 60
ohms, use either of the commands below.

wgn(50,1,2,60, "complex”,"linear™);
wgn(50,1,2,60,"linear”, "complex™);

y2
y3

To send a signal through an additive white Gaussian noise channel, use the awgn
function. See “AWGN Channel” on page 12-2 for more information.

Sequence Generators

You can use blocks in the Sequence Generators sublibrary of the Communications
Sources library to generate sequences for spreading or synchronization in a
communication system. You can open the Sequence Generators sublibrary by double-
clicking its icon in the main Communications System Toolbox block library.

Blocks in the Sequence Generators sublibrary generate

* Pseudorandom sequences
* Synchronization codes

* Orthogonal codes
Pseudorandom Sequences
The following table lists the blocks that generate pseudorandom or pseudonoise (PN)

sequences. The applications of these sequences range from multiple-access spread
spectrum communication systems to ranging, synchronization, and data scrambling.

Sequence Block

Gold sequences Gold Sequence Generator
Kasami sequences Kasami Sequence Generator
PN sequences PN Sequence Generator

All three blocks use shift registers to generate pseudorandom sequences. The following is
a schematic diagram of a typical shift register.

1-11

1 Input, Output, and Display

M1 me_o Mo

Output

All r registers in the generator update their values at each time step according to the
value of the incoming arrow to the shift register. The adders perform addition modulo
2. The shift register can be described by a binary polynomial in z, g.2" + g,.12"" + ... + go.
The coefficient g; is 1 if there is a connection from the ith shift register to the adder, and
0 otherwise.

The Kasami Sequence Generator block and the PN Sequence Generator block use this
polynomial description for their Generator polynomial parameter, while the Gold
Sequence Generator block uses it for the Preferred polynomial [1] and Preferred
polynomial [2] parameters.

The lower half of the preceding diagram shows how the output sequence can be shifted by

a positive integer d, by delaying the output for d units of time. This is accomplished by a
single connection along the dth arrow in the lower half of the diagram.

1-12

Sources and Sinks

Synchronization Codes

The Barker Code Generator block generates Barker codes to perform synchronization.
Barker codes are subsets of PN sequences. They are short codes, with a length at most
13, which are low-correlation sidelobes. A correlation sidelobe is the correlation of a
codeword with a time-shifted version of itself.

Orthogonal Codes
Orthogonal codes are used for spreading to benefit from their perfect correlation

properties. When used in multi-user spread spectrum systems, where the receiver is
perfectly synchronized with the transmitter, the despreading operation is ideal.

Code Block

Hadamard codes Hadamard Code Generator
OVSF codes OVSF Code Generator
Walsh codes Walsh Code Generator
Scopes

The Comm Sinks block library contains scopes for viewing three types of signal plots:

+ “Eye Diagrams” on page 1-13
* “Scatter Plots” on page 1-14

+ “Signal Trajectories” on page 1-14

The following table lists the blocks and the plots they generate.

Block Name Plots

Eye Diagram Eye diagram of a signal

Constellation Diagram Constellation diagram and signal trajectory
of a signal

Eye Diagrams

An eye diagram is a simple and convenient tool for studying the effects of intersymbol
interference and other channel impairments in digital transmission. When this software

1-13

1 Input, Output, and Display

1-14

product constructs an eye diagram, it plots the received signal against time on a fixed-
interval axis. At the end of the fixed interval, it wraps around to the beginning of the
time axis. As a result, the diagram consists of many overlapping curves. One way to use
an eye diagram is to look for the place where the eye is most widely opened, and use that
point as the decision point when demapping a demodulated signal to recover a digital
message.

The Eye Diagram block produces eye diagrams. This block processes discrete-time
signals and periodically draws a line to indicate a decision, according to a mask
parameter.

Examples appear in “View a Sinusoid” on page 1-14 and “View a Modulated Signal”
on page 1-17.

Scatter Plots

A constellation diagram of a signal plots the signal's value at its decision points. In the
best case, the decision points should be at times when the eye of the signal's eye diagram
1s the most widely open.

The Constellation Diagram block produces a constellation diagram from discrete-time
signals. An example appears in “View a Sinusoid” on page 1-14.

Signal Trajectories

A signal trajectory is a continuous plot of a signal over time. A signal trajectory differs
from a scatter plot in that the latter displays points on the signal trajectory at discrete
intervals of time.

The Constellation Diagram block produces signal trajectories. The Constellation Diagram
block produces signal trajectories when the ShowTrajectory property is set to true.

A signal trajectory connects all points of the input signal, irrespective of the specified
decimation factor (Samples per symbol)

View a Sinusoid

The following model produces a constellation diagram and an eye diagram from a
complex sinusoidal signal. Because the decision time interval is almost, but not exactly,
an integer multiple of the period of the sinusoid, the eye diagram exhibits drift over
time. More specifically, successive traces in the eye diagram and successive points in the
scatter diagram are near each other but do not overlap.

Sources and Sinks

SH ++ |
++ | o+
-
++ |+
|

Sine Wave

Dis rete-Time
Scatter Plot
Scope

=

D sorete Time
Eye Diagram
Scope

Info

To open the model, enter doc_eyediagram at the MATLAB command line. To build the
model, gather and configure these blocks:

+ Sine Wave, in the Sources library of the DSP System Toolbox (not the Sine Wave
block in the Simulink Sources library)
Set Frequency to .502.
+ Set Output complexity to Complex.
+ Set Sample time to 1/16.

+ Constellation Diagram, in the Comm Sinks library

On the Constellation Properties panel, set Samples per symbol to 16.
* Eye Diagram, in the Comm Sinks library

On the Plotting Properties panel, set Samples per symbol to 16.

* On the Figure Properties panel, set Scope position to figposition([42.5
55 35 35]);.

Connect the blocks as shown in the preceding figure. From the model window's
Simulation menu, choose Model Configuration parameters. In the Configuration
Parameters dialog box, set Stop time to 250. Running the model produces the
following scatter diagram plot.

1-15

1 Input, Output, and Display

1-16

File Axes Channels Window Help
Scatter Plot

15

1

06

J

08

Quadrature Amplitude

-1

15

-1.5 -1

05

o

05

In-phase Amplitude

1

15

The points of the scatter plot lie on a circle of radius 1. Note that the points fade as
time passes. This is because the box next to Color fading is checked under Rendering
Properties, which causes the scope to render points more dimly the more time that
passes after they are plotted. If you clear this box, you see a full circle of points.

The Constellation Diagram block displays a circular trajectory.

In the eye diagram, the upper set of traces represents the real part of the signal and the
lower set of traces represents the imaginary part of the signal.

Sources and Sinks

u doc_eyediagramZ/Discrete-Time Eye Diagram 5Scope EI@
File Axes Channels Window Help L]
Eye Diagram
1.5
5 1
=
= 05
£
< 0
m =
B -05
=
o
e -l

=1.8
0 0.1 0.z 0.3 0.4 0.4 0.6 07 0.a 04 1

Time (s)

CQuadrature Amplitude

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s)

View a Modulated Signal

This multipart example creates an eye diagram, scatter plot, and signal trajector plot for
a modulated signal. It examines the plots one by one in these sections:

+ “Eye Diagram of a Modulated Signal” on page 1-17
* “Constellation Diagram of a Modulated Signal” on page 1-20
+ “Signal Trajectory of a Modulated Signal” on page 1-21

Eye Diagram of a Modulated Signal

The following model modulates a random signal using QPSK, filters the signal with a
raised cosine filter, and creates an eye diagram from the filtered signal.

Random L QPSK i AWGEN L —-_//-_-— — i;
Integer Mormal
Random Integer QFSK AWEGN Raied Casine Diszrete-Time
Generator Modulator Channel Transmit Fitter Eye Diagram
Baseband Scope

1-17

1 Input, Output, and Display

To open the model, enter doc_signaldisplays at the MATLAB command line. To build
the model, gather and configure the following blocks:

* Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library
+ Set M-ary number to 4.
+ Set Sample time to 0.01.

+ QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of the
Modulation library of Communications System Toolbox, with default parameters

* AWGN Channel, in the Channels library of Communications System Toolbox, with
the following changes to the default parameter settings:
+ Set Mode to Signal-to-noise ratio (SNR).
+ Set SNR (dB) to 15.

* Raised Cosine Transmit Filter, in the Comm Filters library

+ Set Filter shape to Normal.
+ Set Rolloff factor to 0.5.
+ Set Filter span in symbols to 6.
* Set Output samples per symbol to 8.
Set Input processing to Elements as channels (sample based).

* Eye Diagram, in the Comm Sinks library

+ Set Samples per symbol to 8.

+ Set Symbols per trace to 3. This specifies the number of symbols that are
displayed in each trace of the eye diagram. A trace is any one of the individual
lines in the eye diagram.

+ Set Traces displayed to 3.

+ Set New traces per display to 1. This specifies the number of new traces that
appear each time the diagram is refreshed. The number of traces that remain in
the diagram from one refresh to the next is Traces displayed minus New traces
per display.

* On the Rendering Properties panel, set Markers to + to indicate the points
plotted at each sample. The default value of Markers is empty, which indicates no
marker.

1-18

Sources and Sinks

* On the Figure Properties panel, set Eye diagram to display to In-phase
only.

When you run the model, the Eye Diagram displays the following diagram. Your exact
image varies depending on when you pause or stop the simulation.

=}
el 1

=
i

In-Phase Amplitude
[am]

a 0.s 1 15 2 248 3
Time (s)

Three traces are displayed. Traces 2 and 3 are faded because Color fading under
Rendering Properties is selected. This causes traces to be displayed less brightly

the older they are. In this picture, Trace 1 is the most recent and Trace 3 is the oldest.
Because New traces per display is set to 1, only Trace 1 is appearing for the first time.
Traces 2 and 3 also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and because
Samples per trace is set to 8, each symbol contains eight samples. Note that trace

1 contains 24 points, which is the product of Symbols per trace and Samples per
symbol. However, traces 2 and 3 contain 25 points each. The last point in trace 2, at the
right border of the scope, represents the same sample as the first point in trace 1, at the
left border of the scope. Similarly, the last point in trace 3 represents the same sample as
the first point in trace 2. These duplicate points indicate where the traces would meet if
they were displayed side by side, as illustrated in the following picture.

1-19

1 Input, Output, and Display

1-20

You can view a more realistic eye diagram by changing the value of Traces displayed to
40 and clearing the Markers field.

15

1

In-Phase Amplitude

0.5 1 15 2 25 3

When the Offset parameter is set to 0, the plotting starts at the center of the first
symbol, so that the open part of the eye diagram is in the middle of the plot for most
points.

Constellation Diagram of a Modulated Signal

The following model creates a scatter plot of the same signal considered in “Eye Diagram
of a Modulated Signal” on page 1-17.

M awon * AN
Random L QPSK i AWGEN L — ;E
Integer Mormal
Random Integer QFSK AWEGN Raied Casine Diszrete-Time
Generator Modulator Channel Transmit Fitter Eye Diagram
Baseband Scope

Sources and Sinks

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on
page 1-17 but replace the Eye Diagram block with the following block:

* Constellation Diagram, in the Comms Sinks library

+ Set Samples per symbol to 2.

+ Set Offset to 0. This specifies the number of samples to skip before plotting the
first point.

Set Symbols to display to 40.

When you run the simulation, the Constellation Diagram block displays the following
plot.

1
’00
+ *
* *
*
0s o
o
= .
% *
= + +
Y
wm D
E *
o
£
g *
()
as .
* . "
-
15
A5 i 05 i 0s 1 15

In-phase Amplitude

The plot displays 30 points. Because Color fading under Rendering Properties is
selected, points are displayed less brightly the older they are.

Signal Trajectory of a Modulated Signal
The following model creates a signal trajectory plot of the same signal considered in “Eye

Diagram of a Modulated Signal” on page 1-17.

1-21

1 Input, Output, and Display

e o AN
Random i QPSK L AWGEN i >
Integer Normal
Random Integer QPSK AWGN RaiEed CosiNe ooy ete Time Signal Trajectory Scope
Generator Medulator Channel Transmit Filter
Baseband

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on
page 1-17 but replace the Eye Diagram block with the following block:

+ Constellation Diagram , in the Comms Sinks library

Set Samples per symbol to 8.

+ Set Symbols displayed to 40. This specifies the number of symbols displayed
in the signal trajectory. The total number of points displayed is the product of
Samples per symbol and Symbols displayed.

+ Set New symbols per display to 10. This specifies the number of new symbols
that appear each time the diagram is refreshed. The number of symbols that
remain in the diagram from one refresh to the next is Symbols displayed minus
New symbols per display.

When you run the model, the Constellation Diagram displays a trajectory like the one
below.

1-22

Sources and Sinks

udoc_signaI_trajector)f_a'Discrete-TimeSignalTrajector)rScope == | =]
File Axes Channels Window Help L]

Signal Trajectory

CQuadrature Amplitude
=

=2 1.5 =il -0.5 1] 0.5 1 1.5 2
In-phase Amplitude

The plot displays 40 symbols. Because Color fading under Rendering Properties is
selected, symbols are displayed less brightly the older they are.

See “Constellation Diagram of a Modulated Signal” on page 1-20 to compare the
preceding signal trajectory to the scatter plot of the same signal. The Constellation
Diagram block connects the points displayed by the Constellation Diagram block to
display the signal trajectory.

If you increase Symbols displayed to 100, the model produces a signal trajectory like

the one below. The total number of points displayed at any instant is 800, which is the
product of the parameters Samples per symbol and Symbols displayed.

1-23

1 Input, Output, and Display

15
1
0.s
=
=
£
£
et} D
E]
b
=
o
8
0.5
-1
15
-1.5 -1 0.5 a 0.s 1 15
Frame: 11 In-phase Amplitude

1-24

Read Signals From Hardware Devices

Read Signals From Hardware Devices

Communications System Toolbox software can read a signal from external hardware
devices using the Communications System Toolbox support packages for software-defined
radio (SDR). You can design, prototype and test SDR applications in MATLAB and
Simulink with live radio signals. Use the supported hardware as a radio peripheral with
the supplied bitstream and also run your own design in the FPGA with the automated
targeting workflow using HDL Coder™.

Generate both fixed and user-provided bitstreams with hardware support packages that
support HDL targeting. For example, the Communications System Toolbox Support

Package for Xilinx® Zynq®-Based Radio and Communications System Toolbox Support
Package for USRP® Embedded Series Radio can be used for this purpose.

For more information about software-defined radios with MATLAB and Simulink, visit
Software-Defined Radio (SDR) on the MathWorks®™ web site.

For a list of support packages for use with Communications System Toolbox, visit the
Hardware Support Catalog for Communications System Toolbox.

1-25

http://www.mathworks.com/discovery/sdr.html
https://www.mathworks.com/hardware-support.html?fq=product:CM

1 Input, Output, and Display

Transmit and Receive Signals Over the Air with Software Defined

Radios

1-26

Communications System Toolbox software can read a signal from external hardware
devices using the Communications System Toolbox support packages for software-defined
radio (SDR). You can design, prototype and test SDR applications in MATLAB and
Simulink with live radio signals. Use the supported hardware as a radio peripheral with
the supplied bitstream and also run your own design in the FPGA with the automated
targeting workflow using HDL Coder.

The support packages for SDR support both fixed bitstream and custom bitstream (user-
provided logic) workflows (SDR Targeting).

For more information about software-defined radios with MATLAB and Simulink, visit
Software-Defined Radio (SDR) on the MathWorks web site.

For a list of support packages for use with Communications System Toolbox, visit the
Hardware Support Catalog for Communications System Toolbox.

http://www.mathworks.com/discovery/sdr.html
https://www.mathworks.com/hardware-support.html?fq=product:CM

Data and Signal Management

+ “Matrices, Vectors, and Scalars” on page 2-2

+ “Sample-Based and Frame-Based Processing” on page 2-4
* “Floating-Point and Fixed-Point Data Types” on page 2-5
* “Delays” on page 2-6

2 Dataand Signal Management

Matrices, Vectors, and Scalars

Simulink supports matrix signals, one-dimensional arrays, sample-based processing, and
frame-based processing. This section describes how Communications System Toolbox
processes certain kinds of matrices and signals.

This documentation uses the unqualified words scalar and vector in ways that emphasize
a signal's number of elements, not its strict dimension properties:

* A scalar signal contains a single element. The signal could be a one-dimensional array
with one element, or a matrix of size 1-by-1.

* A vector signal contains one or more elements, arranged in a series. The signal
could be a one-dimensional array, a matrix that has exactly one column, or a matrix
that has exactly one row. The number of elements in a vector is called its length or,
sometimes, its width.

In cases when it is important for a description or schematic to distinguish among
different types of scalar signals or different types of vector signals, this document
mentions the distinctions explicitly. For example, the terms one-dimensional array,
column vector, and row vector distinguish among three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns
the matrix has. The orientation of a two-dimensional vector is its status as either a row
vector or column vector. A one-dimensional array has no orientation — this is sometimes
called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full
matrix signal.

Processing Rules

The following rules indicate how the blocks in the Communications System Toolbox
process scalar, vector, and matrix signals.

* In their numerical computations, blocks that process scalars do not distinguish
between one-dimensional scalars and one-by-one matrices. If the block produces a
scalar output from a scalar input, the block preserves dimension.

* For vector input signals:

The numerical computations do not distinguish between one-dimensional arrays
and M-by-1 matrices.

Matrices, Vectors, and Scalars

* Most blocks do not process row vectors and do not support multichannel
functionality.

The block output preserves dimension and orientation.

* The block treats elements of the input vector as a collection that arises naturally
from the block's operation (for example, a collection of symbols that jointly
represent a codeword) or as successive samples from a single time series.

* Most gnal

blocks do not process matrix signals that have more than one row and more than one
column. For blocks that do, a signal in the shape of an N-by-M matrix represents a
series of IV successive samples from M channels. An Input processing parameter on
the block determines whether each element or column of the input signal is a channel.

* Some blocks, such as the digital baseband modulation blocks, can produce multiple
output values for each value of a scalar input signal. A Rate options parameter on
the block determines if the additional samples are output by increasing the rate of the
output signal or by increasing the size of the output signal.

* Blocks that process continuous-time signals do not process frame-based inputs. Such
blocks include the analog phase-locked loop blocks.

To learn which blocks processes scalar signals, vector signals, or matrices, refer to each
block's individual Help page.

2 Dataand Signal Management

Sample-Based and Frame-Based Processing

2-4

In frame-based processing, blocks process data one frame at a time. Each frame of data
contains sequential samples from an independent channel. For more information, see
“Sample- and Frame-Based Concepts” (DSP System Toolbox) in the DSP System Toolbox
documentation.

In sample-based processing, blocks process signals one sample at a time. Each element of
the input signal represents one sample of a distinct channel. For more information, see
“What Is Sample-Based Processing?” (DSP System Toolbox) in the DSP System Toolbox
documentation.

Floating-Point and Fixed-Point Data Types

Floating-Point and Fixed-Point Data Types

The inputs and outputs of the communications blocks support various data types. For
some blocks, changing to single outputs can lead to different results when compared
with double outputs for the same set of parameters. Some blocks may naturally output
different data types than what they receive (e.g. digital modulators) a signal. Refer to the
individual block reference pages for details.

For more information, see “Floating-Point Numbers” (Fixed-Point Designer) in the Fixed-
Point Designer™ documentation and “Fixed-Point Signal Processing” (DSP System
Toolbox) in the DSP System Toolbox documentation.

Access the Block Support Table

The Communications System Toolbox Block Support Table is available through the
Simulink model Help menu. The table provides information about data type support and
code generation coverage for all Communications System Toolbox blocks. To access the
table, select Help > Simulink > Block Data Types & Code Generation Support >
Communications System Toolbox.

You can also access the Communications System Toolbox Data Type Support Table by
typing showcommblockdatatypetable at the MATLAB command line.

2-5

2 Dataand Signal Management

Delays

2-6

In this section...

“Section Overview” on page 2-6

“Sources of Delays” on page 2-7

“ADSL Example Model” on page 2-7

“Punctured Coding Model” on page 2-9

“Use the Find Delay and Align Signals Blocks” on page 2-12

Section Overview

Some models require you to know how long it takes for data in one portion of a model to
influence a signal in another portion of a model. For example, when configuring an error
rate calculator, you must indicate the delay between the transmitter and the receiver. If
you miscalculate the delay, the error rate calculator processes mismatched pairs of data
and consequently returns a meaningless result.

This section illustrates the computation of delays in multirate models and in models
where the total delay in a sequence of blocks comprises multiple delays from individual
blocks. This section also indicates how to use the Find Delay and Align Signals blocks to
help deal with delays in a model.

Other References for Delays

Other parts of this documentation set also discuss delays. For information about dealing
with delays or about delays in specific types of blocks, see

* “Group Delay” on page 14-5

* Find Delay block reference page

* Align Signals block reference page

+ Viterbi Decoder block reference page

* Derepeat block reference page
For discussions of delays in simpler examples than the ones in this section, see

+ Example: A Rate 2/3 Feedforward Encoder. on page 6-55.

Delays

+ Example: Soft-Decision Decoding on page 6-61. (See Delay in Received Data on
page 6-65.)

+ Example: Delays from Demodulation on page 6-198.

Sources of Delays

While some blocks can determine their current output value using only the current input
value, other blocks need input values from multiple time steps to compute the current
output value. In the latter situation, the block incurs a delay. An example of this case is
when the Derepeat block must average five samples from a scalar signal. The block must
delay computing the average until it has received all five samples.

In general, delays in your model might come from various sources:

* Digital demodulators

+ Convolutional interleavers or deinterleavers

* Equalizers

+ Viterbi Decoder block

* Buffering, downsampling, derepeating, and similar signal operations
+ Explicit delay blocks, such as Delay and Variable Integer Delay

+ Filters

The following discussions include some of these sources of delay.

ADSL Example Model

This section examines the 256 Channel asymmetric digital subscriber line (ADSL)
example model and aims to compute the correct Receive delay parameter value in

one of the Error Rate Calculation blocks in the model. The model includes delays from
convolutional interleaving and an explicit delay block. To open the ADSL example model,
enter commadsl in the MATLAB Command Window.

In the ADSL example, data follows one of two parallel paths, one with a nonzero delay
and the other with a delay of zero. One path includes a convolutional interleaver and
deinterleaver, while the other does not. Near the end of each path is an Error Rate
Calculation block, whose Receive delay parameter must reflect the delay of the given

2-7

2 Dataand Signal Management

2-8

path. The rest of the discussion makes an observation about frame periods in the model
and then considers the path for interleaved data.

Frame Periods in the Model

Before searching for individual delays, first observe that most signal lines throughout
the model share the same frame period. To see this, select Display > Sample Time.
This option colors blocks and signals according to their frame periods (or sample periods,
in the case of sample-based signals). All signal lines at the top level of the model are

the same color, which means that they share the same frame period. As a consequence,
frames are a convenient unit for measuring delays in the blocks that process these
signals. In the computation of the cumulative delay along a path, the weighted average
(of numbers of frames, weighted by each frame's period) reduces to a sum.

Path for Interleaved Data

In the transmitter portion of the model, the interleaved path is the lower branch, shown
in yellow below. Similarly, the interleaved path in the receiver portion of the model is the
lower branch. Near the end of the interleaved path is an Error Rate Calculation block
that computes the value labeled Interleaved BER.

General Serambler [erl
U UE B CRC | O >
Generator |:|
s DMT
=1 Madulator
U UIE] - GErE‘eEr:al » Scrambler » Convolutional)
= G &FEC Interleaver
eneratar

The following table summarizes the delays in the path for noninterleaved data.
Subsequent paragraphs explain the delays in more detail and explain why the total delay
relative to the Error Rate Calculation block is one frame, or 776 samples.

Block Delay, in Output Delay, in Frames Delay, in Input
Samples from Samples to Error Rate
Individual Block Calculation Block

Convolutional 40 1 (combined) 776 (combined)

Interleaver and

Convolutional

Deinterleaver pair

Delay 800

Delays

Block Delay, in Output Delay, in Frames Delay, in Input
Samples from Samples to Error Rate
Individual Block Calculation Block

Total N/A 1 776

Interleaving

Unlike the noninterleaved path, the interleaved path contains a Convolutional
Interleaver block in the transmitter and a Convolutional Deinterleaver block in the
receiver. The delay of the interleaver/deinterleaver pair is the product of the Rows of
shift registers parameter, the Register length step parameter, and one less than
the Rows of shift registers parameter. In this case, the delay of the interleaver/
deinterleaver pair turns out to be 5*2*¥4 = 40 samples.

Delay Block

The receiver portion of the interleaved path also contains a Delay block. This block
explicitly causes a delay of 800 samples having the same sample time as the 40 samples
of delay from the interleaver/deinterleaver pair. Therefore, the total delay from
interleaving, deinterleaving, and the explicit delay is 840 samples. These 840 samples
make up one frame of data leaving the Delay block.

Summing the Delays

No other blocks in the interleaved path of the example cause any delays. Adding the
delays from the interleaver/deinterleaver pair and the Delay block indicates that the
total delay in the interleaved path is one frame.

Total Delay Relative to Error Rate Calculation Block

The Error Rate Calculation block that computes the value labeled Interleaved BER
requires a Receive delay parameter value that is equivalent to one frame. The Receive
delay parameter is measured in samples and each input frame to the Error Rate
Calculation block contains 776 samples. Also, the frame rate at the outports of all delay-
causing blocks in the interleaved path equals the frame rate at the input of the Error
Rate Calculation block. Therefore, the correct value for the Receive delay parameter is
776 samples.

Punctured Coding Model

This section discusses a punctured coding model that includes delays from decoding,
downsampling, and filtering. Two Error Rate Calculation blocks in the model work

2-9

2 Dataand Signal Management

correctly if and only if their Receive delay parameters accurately reflect the delays in
the model. To open the model, enter doc_punct in the MATLAB Command Window.

[Punctured Coding Model }

JM_ [T o [4x1] L [21

Binary

- QPSK

c I
1 Encodi 1
3] ncoder Tax] o

Bernouli Random Rate 3/4 punctured code QFSK Raised Cosine
Binary Genes ator Maodulstor Transmit Fitter
Baseband
[2]

2-10

0.0007383)|

= T 3 m
45‘ ﬁ A
= 5.691e04 AWGN

5.508e+04|
Inner Emrar Rate

Display Display1 ﬂ[ﬁc‘f

Unipolar to [jax) MWL gy A L
Bipolar QPSK Square roct Receive Fiter
4]

Converter

0.01208

s
[x)| Viterbi Decoder Tl

=
Unipoler to QPSK
Bipolar Demadulsior [2x=1

Zx1] Scatter Fiot

Soft Decision

Frame Periods in the Model

Before searching for individual delays, select Display>Sample Time>All. Only the
rightmost portion of the model differs in color from the rest of the model. This means that
all signals and blocks in the model except those in the rightmost edge share the same
frame period. Consequently, frames at this predominant frame rate are a convenient unit
for measuring delays in the blocks that process these signals. In the computation of the
cumulative delay along a path, the weighted average (of numbers of frames, weighted by
each frame's period) reduces to a sum.

The yellow blocks represent multirate systems, while the AWGN Channel block runs at a
higher frame rate than all the other blocks in the model.

Inner Error Rate Block

The block labeled Inner Error Rate, located near the center of the model, is a copy of the
Error Rate Calculation block from the Comm Sinks library. It computes the bit error
rate for the portion of the model that excludes the punctured convolutional code. In the
portion of the model between this block's two input signals, delays come from the Tx

Delays

Filter and the Rx Filter. This section explains why the Inner Error Rate block’s Receive
delay parameter is the total delay value of 16.

Tx Filter Block

The block labeled Tx Filter is a copy of the Raised Cosine Transmit Filter block. It
interpolates the input signal by a factor of 8 and applies a square-root raised cosine filter.
The value of the block’s Filter span in symbols parameter is 6, which means its group
delay is 3 symbols. Since this block’s sample rate increases from input port to output
port, it must output an initial frame of zeros at the beginning of the simulation. Since its
input frame size is 2, the block’s total delay is 2 + 3 = 5 symbols. This corresponds to 5
samples at the block’s input port.

Rx Filter Block

The block labeled Rx Filter is a copy of the Raised Cosine Receive Filter block. It
decimates its input signal by a factor of 8 and applies another square-root raised cosine
filter. The value of this block’s Filter span in symbols parameter is 6, which means its
group delay is 3 symbols. At the block’s output, the 3 symbols correspond to 3 samples.

QPSK Demodulator Block

The block labeled QPSK Demodulator Baseband receives complex QPSK signals and
outputs 2 bits for each complex input. This conversion to output bits doubles the
cumulative delay at the input of the block.

Summing the Delays

No other blocks in the portion of the model between the Inner Error Rate block's two
input signals cause any delays. The total delayisthen (2 + 3 + 3) * 2 = 16
samples. This value can be used as the Receive Delay parameter in the Inner Error
Rate block.

Outer Error Rate Block

The block labeled Outer Error Rate, located at the left of the model, is a copy of the Error
Rate Calculation block from the Comm Sinks library. It computes the bit error rate for
the entire model, including the punctured convolutional code. Delays come from the Tx
Filter, Rx Filter, and Viterbi Decoder blocks. This section explains why the Outer Error
Rate block's Receive delay parameter is the total delay value of 108.

Filter and Downsample Blocks

The Tx Filter, Rx Filter, and Downsample blocks have a combined delay of 16 samples.
For details, see “Inner Error Rate Block” on page 2-10.

2-11

2 Dataand Signal Management

2-12

Viterbi Decoder Block

Because the Viterbi Decoder block decodes a rate 3/4 punctured code, it actually reduces
the delay seen at its input. This reduction is given as 16 * 3/4 = 12 samples.

The Viterbi Decoder block decodes the convolutional code, and the algorithm’s use of

a traceback path causes a delay. The block processes a frame-based signal and has
Operation mode set to Continuous. Therefore, the delay, measured in output samples,
is equal to the Traceback depth parameter value of 96. (The delay amount is stated

on the reference page for the Viterbi Decoder block.) Because the output of the Viterbi
Decoder block is precisely one of the inputs to the Outer Error Rate block, it is easier to
consider the delay to be 96 samples rather than to convert it to an equivalent number of
frames.

Total Delay Relative to Outer Error Rate Block

The Outer Error Rate block requires a Receive delay parameter value that is the sum
of all delays in the system. This total delay is 12 + 96 = 108 samples.

Use the Find Delay and Align Signals Blocks

The preceding discussions explained why certain Error Rate Calculation blocks in the
models had specific Receive delay parameter values. You could have arrived at those
numbers independently by using the Find Delay block, or you could have avoided needing
to know those numbers by using the Align Signals block. This section explains both
techniques using the ADSL example model, commadsl, as an example. Applying the
techniques to the punctured convolutional coding example, discussed in “Punctured
Coding Model” on page 2-9, would be similar.

Using the Find Delay Block to Determine the Correct Receive Delay

Recall from “Path for Interleaved Data” on page 2-8 that the delay in the path for
interleaved data is 776 samples. To have the Find Delay block compute that value for
you, use this procedure:

1 Insert a Find Delay block and a Display block in the model near the Error Rate
Calculation block that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

Delays

- 0000637
[Tw_Int_Bitz] T Error Rate
- 217

- Calculation
| [Rnnt Bits] = Fix [F407er005]
[Fx_Int_Bits] 3 .307 e+005

sRef [
Find Fi=]
delay |—jm
z0el Delaw ¥

Find Delay

3 Set the Find Delay block's Correlation window length parameter to a value
substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else the values
produced by the Find Delay block do not stabilize at a correct value.

4 Run the simulation.
The new Display block now shows the value 776, as expected.
Using the Align Signals Block Before Computing the Error Rate

To use the Error Rate Calculation block to compute the value labeled Interleaved BER
without having to set the Receive delay parameter to a nonzero value, you can use the
Align Signals block to automatically align the transmitted and received signals before the
Error Rate Calculation block performs its computations. Use this procedure:

1 Insert an Align Signals block and a Display block in the model near the Error Rate
Calculation block that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

) [oowa]
[T=_Int_Bitz] —p] 21 1 T Errar Rate
= Aligr 52 el R Caleulation [
- Sighals [459e+005]

[Re_Int_Bitz] =] 37 delay

Align Signals L» 776

2-13

2 Dataand Signal Management

2-14

3 Set the Align Signals block's Correlation window length parameter to a value
substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else the Align
Signals block cannot find the correct amount by which to delay one of the signals. If
the delay output from the Align Signals block does not stabilize at a constant value,
the correlation window length is probably too small.

4 Set the Error Rate Calculation block's Receive delay parameter to 0. You might
also want to set the block's Computation delay parameter to a nonzero value to
account for the possibility that the Align Signals block takes a nonzero amount of
time to stabilize on the correct amount by which to delay one of the signals.

5 Run the simulation.

The new Display block now shows the value 776. Also, the Align Signals block delays one
signal relative to the other so that the signals are aligned. The Error Rate Calculation
block therefore processes two signals that are properly aligned with each other and does
not need to use a nonzero Receive delay parameter to attempt any further alignment.

Examining the delay output signal from the Align Signals block, using the Display block
as in the figure above, is important because if the delay output signal does not stabilize
at a constant value, the signals are not truly aligned and the error rate is not reliable. In
this case, the Align Signals block's Correlation window length parameter is probably
too small.

Manipulate Delays

+ “Delays and Alignment Problems” on page 2-14

+ “Aligning Words of a Block Code” on page 2-18

+ “Aligning Words for Interleaving” on page 2-20

+ “Aligning Words of a Concatenated Code” on page 2-23

+ “Aligning Words for Nonlinear Digital Demodulation” on page 2-25

Delays and Alignment Problems

Some models require you not only to compute delays but to manipulate them. For
example, if a model incurs a delay between a block encoder and its corresponding
decoder, the decoder might misinterpret the boundaries between the codewords that it
receives and, consequently, return meaningless results. More generally, such a situation

Delays

can arise when the path between paired components of a block-oriented operation (such
as interleaving, block coding, or bit-to-integer conversions) includes a delay-causing
operation (such as those listed in “Sources of Delays” on page 2-7).

To avoid this problem, you can insert an additional delay of an appropriate amount
between the encoder and decoder. If the model also computes an error rate, then
the additional delay affects that process, as described in “Delays” on page 2-6.

This section uses examples to illustrate the purpose, methods, and implications of
manipulating delays in a variety of circumstances.

This section illustrates the sensitivity of block-oriented operations to delays, using a
small model that aims to capture the essence of the problem in a simple form. Open the
model by entering doc_alignment in the MATLAB Command Window. Then run the
simulation so that the Display blocks show relevant values.

T — e
[Delays and Alignment Problems]|
Signal To
Workspace
T Eror Rate
Ep—— B=—H o L o | B8 | Colculation [
HE:::: ! " |Hamming Encoder v z z " Hamming Decoder| |
Error R ate Calculation
Bernoulli Random Hamming Encoder Inherent Delay Added Delay Hamming Decoder Emor Rate Display
Binary Gensrafor
¥ b — m
L L o
Workspace
Word Delayed Word

In this model, two coding blocks create and decode a block code. Two copies of the Delay
block create a delay between the encoder and decoder. The two Delay blocks have
different purposes in this illustrative model:

* The Inherent Delay block represents any delay-causing blocks that might occur in a
model between the encoder and decoder. See “Sources of Delays” on page 2-7 for
a list of possibilities that might occur in a more realistic model.

2-15

2 Dataand Signal Management

2-16

* The Added Delay block is an explicit delay that you insert to produce an appropriate
amount of total delay between the encoder and decoder. For example, the commadsl|
model contains a Delay block that serves this purpose.

Observing the Problem

By default, the Delay parameters in the Inherent Delay and Added Delay blocks are set
to 1 and O, respectively. This represents the situation in which some operation causes a
one-bit delay between the encoder and decoder, but you have not yet tried to compensate
for it. The total delay between the encoder and decoder is one bit. You can see from the
blocks labeled Word and Delayed Word that the codeword that leaves the encoder 1s
shifted downward by one bit by the time it enters the decoder. The decoder receives a
signal in which the boundary of the codeword is at the second bit in the frame, instead of
coinciding with the beginning of the frame. That is, the codewords and the frames that
hold them are not aligned with each other.

This nonalignment is problematic because the Hamming Decoder block assumes that
each frame begins a new codeword. As a result, it tries to decode a word that consists of
the last bit of one output frame from the encoder followed by the first six bits of the next
output frame from the encoder. You can see from the Error Rate Display block that the
error rate from this decoding operation is close to 1/2. That is, the decoder rarely recovers
the original message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving each period
symbol from the end of the sentence to the end of the first word of the next sentence.

If you try to read such a paragraph while assuming that a new sentence begins after a
period, you misunderstand the start and end of each sentence. As a result, you might fail
to understand the meaning of the paragraph.

To see how delays of different amounts affect the decoder's performance, vary the values
of the Delay parameter in the Added Delay block and the Receive delay parameter in
the Error Rate Calculation block and then run the simulation again. Many combinations
of parameter values produce error rates that are close to 1/2. Furthermore, if you
examine the transmitted and received data by entering

[tx rx]

in the MATLAB Command Window, you might not detect any correlation between the
transmitted and received data.

Delays

Correcting the Delays

Some combinations of parameter values produce error rates of zero because the delays
are appropriate for the system. For example:

* In the Added Delay block, set Delay to 6.
* In the Error Rate Calculation block, set Receive delay to 4.

* Run the simulation.
* Enter [tx rx] in the MATLAB Command Window.

The top number in the Error Rate Display block shows that the error rate is zero. The
decoder recovered each transmitted message correctly. However, the Word and Displayed
Word blocks do not show matching values. It is not immediately clear how the encoder's
output and the decoder's input are related to each other. To clarify the matter, examine
the output in the MATLAB Command Window. The sequence along the first column (tx)
appears in the second column (rx) four rows later. To confirm this, enter

isequal (tx(1:end-4),rx(5:end))

in the MATLAB Command Window and observe that the result is 1 (true). This last
command tests whether the first column matches a shifted version of the second column.
Shifting the MATLAB vector rx by four rows corresponds to the Error Rate Calculation
block's behavior when its Receive delay parameter is set to 4.

To summarize, these special values of the Delay and Receive delay parameters work
for these reasons:

+ Combined, the Inherent Delay and Added Delay blocks delay the encoded signal by
a full codeword rather than by a partial codeword. Thus the decoder is correct in its
assumption that a codeword boundary falls at the beginning of an input frame and
decodes the words correctly. However, the delay in the encoded signal causes each
recovered message to appear one word later, that is, four bits later.

* The Error Rate Calculation block compensates for the one-word delay in the system
by comparing each word of the transmitted signal with the data four bits later in the
received signal. In this way, it correctly concludes that the decoder's error rate is zero.

Note These are not the only parameter values that produce error rates of zero.
Because the code in this model is a (7, 4) block code and the inherent delay value is 1,
you can set the Delay and Receive delay parameters to 7k-1 and 4k, respectively,

2-17

2 Dataand Signal Management

2-18

for any positive integer k. It is important that the sum of the inherent delay (1) and
the added delay (7k-1) is a multiple of the codeword length (7).

Aligning Words of a Block Code

The ADSL example, discussed in “ADSL Example Model” on page 2-7, illustrates

the need to manipulate the delay in a model so that each frame of data that enters a
block decoder has a codeword boundary at the beginning of the frame. The need arises
because the path between a block encoder and block decoder includes a delay-causing
convolutional interleaving operation. This section explains why the model uses a Delay
block to manipulate the delay between the convolutional deinterleaver and the block
decoder, and why the Delay block is configured as it is. To open the ADSL example
model, enter commads|l in the MATLAB Command Window.

Misalignment of Codewords

In the ADSL example, the Convolutional Interleaver and Convolutional Deinterleaver
blocks appear after the Scrambler & FEC subsystems but before the Descrambler & FEC
subsystems. These two subsystems contain blocks that perform Reed-Solomon coding,
and the coding blocks expect each frame of input data to start on a new word rather than
in the middle of a word.

As discussed in “Path for Interleaved Data” on page 2-8, the delay of the interleaver/
deinterleaver pair is 40 samples. However, the input to the Descrambler & FEC
subsystem is a frame of size 840, and 40 is not a multiple of 840. Consequently, the
signal that exits the Convolutional Deinterleaver block is a frame whose first entry does
not represent the beginning of a new codeword. As described in “Observing the Problem”
on page 2-16, this misalignment, between codewords and the frames that contain

them, prevents the decoder from decoding correctly.

Inserting a Delay to Correct the Alignment

The ADSL example solves the problem by moving the word boundary from the 41st
sample of the 840-sample frame to the first sample of a successive frame. Moving the
word boundary is equivalent to delaying the signal. To this end, the example contains a
Delay block between the Convolutional Deinterleaver block and the Descrambler & FEC
subsystem.

- Corvealutional E#EI:-:'IL -ann E#EI:-:'IE Descrambler |

Deinterleawer & FEC

Delays

The Delay parameter in the Delay block is 800 because that is the minimum number

of samples required to shift the 41st sample of one 840-sample frame to the first sample
of the next 840-sample frame. In other words, the sum of the inherent 40-sample delay
(from the interleaving/deinterleaving process) and the artificial 800-sample delay is a full
frame of data, not a partial frame.

This 800-sample delay has implications for other parts of the model, specifically, the
Receive delay parameter in one of the Error Rate Calculation blocks. For details about
how the delay influences the value of that parameter, see “Path for Interleaved Data” on
page 2-8.

Using the Find Delay Block

The preceding discussion explained why an 800-sample delay is necessary to correct the
misalignment between codewords and the frames that contain them. Knowing that the
Descrambler & FEC subsystem requires frame boundaries to occur on word boundaries,
you could have arrived at the number 800 independently by using the Find Delay block.
Use this procedure:

Insert a Find Delay block and a Display block in the model.

2 Create a branch line that connects the input of the Convolutional Interleaver block
to the sReT input of the Find Delay block.

3 Create another branch line that connects the output of the Convolutional
Deinterleaver block to the sDel input of the Find Delay block.

4 Connect the delay output of the Find Delay block to the new Display block. The
modified part of the model now looks like the following image (which also shows drop
shadows on key blocks to emphasize the modifications).

2-19

2 Dataand Signal Management

2-20

: - M adul
Tal .
- . Scrambler » Corvolutional
z % FEC Interleayver
atar
Bits] Receiver
D b General CAC =
gl Descrambler [ol Gyndrome
& FEC Detector =
c wtional 0 " General CRC —
| Corolutiona e ezcrambler w| Syrdrome
Deinterleayver 2 [T EFEC [jlrletect,:,r S
—® Ret Fing
el3
=.- =0l DE'E'!,I' ¥

Find Crelay

5 Show the dimensions of each signal in the model by selecting enabling Display >
Signals & Ports > Signal Dimensions.

6 Run the simulation.

The new Display block now shows the value 40. Also, the display of signal dimensions
shows that the output from the Convolutional Deinterleaver block is a frame of length
840. These results indicate that the sequence of blocks between the Convolutional
Interleaver and Convolutional Deinterleaver, inclusive, delays an 840-sample frame by
40 samples. An additional delay of 800 samples brings the total delay to 840. Because the
total delay is now a multiple of the frame length, the delayed deinterleaved data can be
decoded.

Aligning Words for Interleaving

This section describes an example that manipulates the delay before a deinterleaver,
because the path between the interleaver and deinterleaver includes a delay from
demodulation. To open the model, enter doc_gmskint in the MATLAB Command
Window.

Delays

Aligning Words for Interleaving|

i B=—=4 Helical L
» . N .
EHE;::U!“ "| Binary Input ¥l interleaver GMSK
o RS Encoder
Eernculli Random Binary-Input Tt =
Binary Generstor RS Encoder Interleaver Medulotor
Baseband
s E— R — v
Emor Rate Emor Rate == |aven
| Celcutation " Cslculation [AWGN i
System Emor Rate Channel Emer Rate
Blay Display1
B=5 Helical - WL
ghinary Cutput Deinterleaver z GMSK
RS Decoder
Terminator BinarywCutput Tacal Celay —
RS Decoder Deinterleaver Demodulator
Baseband

The model includes block coding, helical interleaving, and GMSK modulation. The table
below summarizes the individual block delays in the model.

Block Delay, in Output Samples Reference
from Individual Block

GMSK Demodulator 16 “Delays in Digital

Baseband Modulation” on page 6-197

Helical Deinterleaver 42 “Delays of Convolutional
Interleavers” on page
6-161

Delay 5 Delay reference page

Misalignment of Interleaved Words

The demodulation process in this model causes a delay between the interleaver and
deinterleaver. Because the deinterleaver expects each frame of input data to start on
a new word, it is important to ensure that the total delay between the interleaver and
deinterleaver includes one or more full frames but no partial frames.

The delay of the demodulator is 16 output samples. However, the input to the Helical
Deinterleaver block is a frame of size 21, and 16 is not a multiple of 21. Consequently,

2-21

2 Dataand Signal Management

2-22

the signal that exits the GMSK Demodulator Baseband block is a frame whose first entry
does not represent the beginning of a new word. As described in “Observing the Problem”
on page 2-16, this misalignment between words and the frames that contain them
hinders the deinterleaver.

Inserting a Delay to Correct the Alignment

The model moves the word boundary from the 17th sample of the 21-sample frame to the
first sample of the next frame. Moving the word boundary is equivalent to delaying the
signal by five samples. The Delay block between the GMSK Demodulator Baseband block
and the Helical Deinterleaver block accomplishes such a delay. The Delay block has its
Delay parameter set to 5.

Combining the effects of the demodulator and the Delay block, the total delay between
the interleaver and deinterleaver is a full 21-sample frame of data, not a partial frame.

Checking Alignment of Block Codewords

The interleaver and deinterleaver cause a combined delay of 42 samples measured at

the output from the Helical Deinterleaver block. Because the delayed output from the
deinterleaver goes next to a Reed-Solomon decoder, and because the decoder expects each
frame of input data to start on a new word, it is important to ensure that the total delay
between the encoder and decoder includes one or more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not necessary to
insert a Delay block between the Helical Deinterleaver block and the Binary-Output RS
Decoder block.

Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Channel Error Rate and
System Error Rate. Each of these blocks has a Receive delay parameter that must
reflect the delay of the path between the block's Tx and Rx signals. The following table
explains the Receive delay values in the two blocks.

Block Receive Delay Value |Reason

Channel Error 16 Delay of GMSK Demodulator Baseband
Rate block, in samples

System Error Rate [15*3 Three fifteen-sample frames: one frame from

the GMSK Demodulator Baseband and Delay
blocks, and two frames from the interleaver/

deinterleaver pair

Delays

Aligning Words of a Concatenated Code

This section describes an example that manipulates the delay between the two portions
of a concatenated code decoder, because the first portion includes a delay from Viterbi
decoding while the second portion expects frame boundaries to coincide with word
boundaries. To open the model, enter doc_concat in the MATLAB Command Window. It

uses the block and convolutional codes from the commdvbt example, but simplifies the
overall design a great deal.

[Aligning Words of a Concatenated Code |

__(204,138) Shortened Reed-Solomon Code__ __Rate 3/4 Punctured Conv olutional Code__

o e=—=H])
Integer to Bit Convolutional
»! > >l »!
Random B Fed RS Encoder uos © Converter v Encoder
Integer
Random Integer Zero Fad Integer-Input Selecor
Generator . RS Encoder Unipclar to
kL Bipolar
Integer to Bit Converter
Converter l
_, = [SN L1 —
FErmr RE.tE L 5 r'Ennr F{s.t:— - AWEN
> Ry Calculation » Ry Caloulstion
Outer Emor Rate Inner Emor Rate
Integer to Bit
Converter
B—=a Bit to Integer -1498
T8 v RS Decoder Fad Converter z Viterbi Decoder
Selector Tnieger-Cutpat Zero Fadl Celay
RS Decoder
Infa

The model includes a shortened block code and a punctured convolutional code. All
signals and blocks in the model share the same frame period. The following table
summarizes the individual block delays in the model.

Block Delay, in Output Samples from Individual Block
Viterbi Decoder 136
Delay 1496 (that is, 1632 - 136)

Misalignment of Block Codewords

The Viterbi decoding process in this model causes a delay between the Integer to Bit
Converter block and the Bit to Integer Converter block. Because the latter block expects

2-23

2 Dataand Signal Management

2-24

each frame of input data to start on a new 8-bit word, it is important to ensure that the
total delay between the two converter blocks includes one or more full frames but no
partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However, the input to
the Bit to Integer Converter block is a frame of size 1632. Consequently, the signal
that exits the Viterbi Decoder block is a frame whose first entry does not represent the
beginning of a new word. As described in “Observing the Problem” on page 2-16, this

misalignment between words and the frames that contain them hinders the converter
block.

Note The outer decoder in this model (Integer-Output RS Decoder) also expects each
frame of input data to start on a new codeword. Therefore, the misalignment issue in
this model affects many concatenated code designs, not just those that convert between
binary-valued and integer-valued signals.

Inserting a Delay to Correct the Alignment

The model moves the word boundary from the 137th sample of the 1632-sample frame to
the first sample of the next frame. Moving the word boundary is equivalent to delaying
the signal by 1632-136 samples. The Delay block between the Viterbi Decoder block and
the Bit to Integer Converter block accomplishes such a delay. The Delay block has its
Delay parameter set to 1496.

Combining the effects of the Viterbi Decoder block and the Delay block, the total delay
between the interleaver and deinterleaver is a full 1632-sample frame of data, not a
partial frame.

Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Inner Error Rate and
Outer Error Rate. Each of these blocks has a Receive delay parameter that must reflect
the delay of the path between the block's TX and Rx signals. The table below explains the
Receive delay values in the two blocks.

Block Receive Delay Value |Reason
Inner Error Rate |136 Delay of Viterbi Decoder block, in samples
Outer Error Rate [1504 (188*8 One 188-sample frame, from the combination
bits) of the inherent delay of the Viterbi Decoder
block and the added delay of the Delay block

Delays

Aligning Words for Nonlinear Digital Demodulation

This example manipulates delay in order obtain the correct symbol synchronization of a
signal so that symbol boundaries correctly align before demodulation occurs.

To open this model, type doc_nonlinear_digital_demod at the MATLAB command
line.

| Aligning Words for Nonlinear Digital Demodulation |

v

v

Lt (=S

Caloulation L
i

E

Error Rste

Calculstion Dizelayl

Lo
CFFSK —bwr‘\r —>

oot

CPFSK Modulstor

R
Baseband Transmit Filter

This model includes a CPFSK modulation scheme and pulse shaping filter. For the
demodulation to work properly, the input signal to the CPFSK demodulator block must
have the correct alignment. Various blocks in this model introduce processing delays.
Because of these delays, the input signal to the CPFSK demodulator block is not in the
correct alignment.

Both the Raised Cosine Transmit and Receive Filter blocks introduce a delay. The delay
is defined as: GroupDelay - Ts

where T's represents the input sample time of the Raised Cosine Transmit Filter block.
The input sample time of the Raised Cosine Transmit Filter block equals the output

sample time of the Raised Cosine Receive Filter block. Therefore, the total delay at the
output of the Raised Cosine Receive Filter is:

2-25

2 Dataand Signal Management

2-26

2-GroupDelay - Ts

or 8-Ts

as GroupDelay = 4

The CPFSK demodulator block receives this delayed signal, and then it processes each
collection of 8 samples per symbol to compute 1 output symbol. You must ensure that

the CPFSK demodulator receives input samples in the correct collection of samples. For
binary CPFSK with a Modulation index of 1/2, the demodulator input must align along
even numbers of symbols. Note that this requirement applies only to binary CPFSK

with a modulation index of 1/2. Other CPM schemes with different M-ary values and
modulation indexes have different requirements.

To ensure that the CPFSK demodulator in this model receives the correct collection
of input samples with the correct alignment, introduce a delay of 8 samples (in this

example, 8 -Ts). The total delay at the input of the CPFSK demodulator is 16- T's ,
which equates to two symbol delays (2.T, where T is the symbol period).

In sample-based mode, the CPFSK demodulator introduces a delay of Traceback
length + 1 samples at its output. In this example, Traceback length equals 16.
Therefore, the total Receiver delay in the Error rate calculation block equals 17+2 or
19. For more information, see “Delays in Digital Modulation” on page 6-197 in the
Communications System Toolbox User's Guide.

Digital Modulation

3 Digital Modulation

Phase Modulation

Phase modulation is a linear baseband modulation technique in which the message
modulates the phase of a constant amplitude signal. Communications System Toolbox
provides modulators and demodulators for these phase modulation techniques:

* Phase shift keying (PSK) — Binary, quadrature, and general PSK

+ Differential phase shift keying (DPSK) — Binary, quadrature, and general DPSK
+ Offset QPSK (OQPSK)

Amplitude —I: Pulse amplitude modulation (PAM)

[medulation Quadrature amplitude modulation (QAM)
|Phase shift keying (PSK) |
Phase
Modulati 1 modulation Differential phase shift keying (DPSK)|
odulation . .

methods for — Offset phase shift keying (OQPSK) |
digital data Frequency

[~ modulation Frequency shift keying (FSK)

Continuous Gaussian minimum shift keying (GMSK)
—phase Minimum shift keying (MSK)
modulation

Continuous phase frequency shift keying (CPFSK)

| Trellis-coded PSK
modulation QAM

| Orthogonal frequency
division modulation (OFDM)

To modulate input data with these techniques, you can use MATLAB functions, System
objects, or Simulink blocks.

Modulatil MATLAB functions System objects Simulink blocks
Scheme

Binary + comm.BPSKModulator|* BPSK Modulator
PSK - comm.BPSKDemodula{ ~ Daseband
(BPSK)

Phase Modulation

Modulatil MATLAB functions System objects Simulink blocks
Scheme
BPSK Demodulator
Baseband
Quadrat comm.QPSKModulator] © QPSK Modulator
PSK comm.QPSKDemodula Baseband
(QPSK) * QPSK Demodulator
Baseband
General|* pskmod comm.PSKModulator M-PSK Modulator
PSK pskdemod comm.PSKDemodulato ~ Baseband
+ M-PSK Demodulator
Baseband
Differen comm.DBPSKModulat{ © DBPSK Modulator
BPSK comm.DBPSKDemodul ~ Baseband
(DBPSK + DBPSK Demodulator
Baseband
Differen comm.DQPSKModulat{* DQPSK Modulator
QPSK comm.DQPSKDemodu] ~ Daseband
(DQPSK + DQPSK Demodulator
Baseband
General |+ dpskmod comm.DPSKModulator ©* M-DPSK Modulator
DPSK dpskdemod comm.DPSKDemodula| ~ Daseband
+ M-DPSK Demodulator
Baseband
OQPSK |+ ogpskmod comm.OQPSKModulat{+ OQPSK Modulator
ogpskdemod comm.0QPSKDemodu] ~ Baseband
+ OQPSK Demodulator
Baseband

Baseband and Passband Simulation

Communications System Toolbox supports baseband and passband simulation methods;
however, the phase shift keying techniques support baseband simulation only.

A general passband waveform can be represented as

3-3

3 Digital Modulation

3-4

Y, (t)cos(2nf,t +0) - Yy(¢)sin(2nf ¢t +6),

where f, is the carrier frequency and 6 is the initial phase of the carrier signal. This
equation is equal to the real part of

[(Y1(8) + j Yy (t))e’®Texp(j2nf.0).

In a baseband simulation, only the expression within the square brackets is modeled.
The vector y is a sampling of the complex signal

(Y, (0) + Yy)e’®

BPSK

In binary phase shift keying (BPSK), the phase of a constant amplitude signal switches
between two values corresponding to binary 1 and binary 0. The passband waveform of a
BPSK signal is

s, ()= /% cos(2mfir+m(1—n)); ne {0,1},

where:

* Ejis the energy per bit.
* Ty 1s the bit duration.

* f.1s the carrier frequency.

In MATLAB, the baseband representation of a BPSK signal is

s,(t) =cos(mn);ne {0,1}.

The BPSK signal has two phases: 0 and .

Phase Modulation

ra !

4| Figure 1 =NNCN X
File Edit View Inset Tools Desktop Window Help &

ﬂlﬁﬂq&ﬁ [% '{_'{_@@@ﬂ,@) DIE‘ EE
Constellation: BPSK,PhaseOffset=0rad

1 T

0.6 7

0.4 7

0.2 1 0 7

Quadrature Amplitude
o
X
X

__1 1 1 1 1 1 1
=2 -1.5 -1 0.5 0 0.5 1.5 2

In-phase Amplitude

-l

The probability of a bit error in an AWGN channel is

2F
P,=0| = |
Ny
where N, is the noise power spectral density.

3-5

3 Digital Modulation

3-6

QPSK

In quadrature phase shift keying, the message bits are grouped into 2-bit symbols, which
are transmitted as one of four phases of a constant amplitude baseband signal. This
grouping provides a bandwidth efficiency that is twice as great as the efficiency of BPSK.
The general QPSK signal is expressed as

2E
(0= = cos(ZﬂfCt+(2n+1)%); ne{0,1,2,3},

s

where E; is the energy per symbol and 7T is the symbol duration. The complex baseband
representation of a QPSK signal is

5. (1) =exp[j7r(2n4+ln; ne{0,1,2,3}.

In this QPSK constellation diagram, each 2-bit sequence is mapped to one of four possible
states. The states correspond to phases of 11/4, 3m1/4, 5m/4, and 7m1/4.

Phase Modulation

-

4| Figure 1

File Edit View Insett Tools

Desktop Window Help

Udde | ARRODEL- S| 0E 0D

Constellation: QPSK,Binary Mapping, PhaseOffset=0.7854rad

15 1
.1 - -
0
@ x> b 4
=
= 05 i
a
E
<
o 0
=
m
®
S 05 3 1
o % *
A .
“15F -
-15 -1 0.5 0 05 1 15

In-phase Amplitude

o

To improve bit error rate performance, the incoming bits can be mapped to a Gray-coded

ordering.

Binary-to-Gray Mapping

Binary Sequence

Gray-coded Sequence

00

00

3-7

3 Digital Modulation

Binary Sequence Gray-coded Sequence
01 01
10 11
11 10

The primary advantage of the Gray code is that only one of the two bits changes when
moving between adjacent constellation points. Gray codes can be applied to higher-order
modulations, as shown in this Gray-coded QPSK constellation.

3-8

Phase Modulation

FII Figure 1 e ™ = | =] ﬂh-\
File Edit View Inset Tools Desktop Window Help &
ﬂlﬁﬂq&ﬁ [% '{_'{_@@@ﬂ,@) DIE‘ EE

Constellation: QPSK,Gray Mapping,PhaseOffset=0.7854rad
16 7
b 1 0]
o b 4 x
e
2 05} i
=3
E
=T
o 0
=
&y
®
S o051 3 2 1
= X X
A F .
A5 :
-1.5 -1 0.5 0 0.5 1 15
In-phase Amplitude

The bit error probability for QPSK in AWGN with Gray coding is
2FE
P,=0| =" |
N,

3-9

3 Digital Modulation

3-10

which is the same as the expression for BPSK. As a result, QPSK provides the same
performance with twice the bandwidth efficiency.

Higher-Order PSK

In MATLAB, you can modulate and demodulate higher-order PSK constellations. The
complex baseband form for an M-ary PSK signal using natural binary-ordered symbol
mapping is

s, (1) =exp[j7r(2’;;1j} ne{0,1,....M —1}.

This 8-PSK constellation uses Gray-coded symbol mapping.

Phase Modulation

-

1.5

0.5

Quadrature Amplitude
o

|4 Figure 2 = | B |-
File Edit View Inset Tools Desktop Window Help &
Odde k| AXNDEL- 2|08 0l

Constellation: 8-PSK,Gray Mapping,PhaseOffset=0.3927rad

011 001
X b
| 010]
x
110
X
111 101
| x x]
-1.5 -1 0.5 0 0.5 15

In-phase Amplitude

For modulation orders beyond 4, the bit error rate performance of PSK in AWGN

worsens. In the following figure, the QPSK and BPSK curves overlap one another.

3-11

3 Digital Modulation

ra it

"4 BER Figure RN X
File Edit Tools Window]

@ & & O E

100 ¢

—— BPSK/QPSK
— B-PSK
——16-PSK

0 2 4 6 8 10 12 14 16 18

DPSK

DPSK is a noncoherent form of phase shift keying that does not require a coherent
reference signal at the receiver. With DPSK, the difference between successive input
symbols is mapped to a specific phase. As an example, for binary DPSK (DBPSK), the
modulation scheme operates such that the difference between successive bits is mapped

3-12

Phase Modulation

to a binary O or 1. When the input bit is 1, the differentially encoded symbol remains the
same as the previous symbol, while an incoming 0 toggles the output symbol.

The disadvantage of DPSK is that it is approximately 3 dB less energy efficient than
coherent PSK. The bit error probability for DBPSK in AWGN is P, = 1/2 exp(E}/Ny).

OQPSK

Offset QPSK is similar to QPSK except that the time alignment of the in-phase and
quadrature bit streams differs. In QPSK, the in-phase and quadrature bit streams
transition at the same time. In OQPSK, the transitions have an offset of a half-symbol
period as shown.

3-13

3 Digital Modulation

4.| Time Scope | o | E |i3_r

File Tools VWiew Simulation Help &

G- 4O - Q-C-F -

E o

Time (secs)

Cluadrature

I T L L L e e e e

=]

Amplitud

Ready Offzet=0 |T=10.000

The in-phase and quadrature signals transition only on boundaries between symbols.
These transitions occur at 1-second intervals because the sample rate is 1 Hz. The
following figure shows the in-phase and quadrature signals for an OQPSK signal.

3-14

Phase Modulation

4.| Time Scope | = =] |i3_]
File Tools VWiew Simulation Help &

G- 4O - Q-C-F -

=

Amplitud

Time (s

Cluadrature

I T L L L e e e e

=]

Amplitud

Ready Offzet=0 |T=10.000

For OQPSK, the quadrature signal has a 1/2 symbol period offset (0.5 s).

The BER for an OQPSK signal in AWGN is identical to that of a QPSK signal. The BER
is

3-15

3 Digital Modulation

3-16

2F
B,=0| .|}
NO

where E, is the energy per bit and N, is the noise power spectral density.

Soft-Decision Demodulation

The BPSK, QPSK, and M-PSK System objects and blocks can demodulate binary data
using either hard decisions or soft decisions. Two soft-decision algorithms are available:
exact log-likelihood ratio (LLR) and approximate LLR. Exact LLR provides the greatest
accuracy but is slower, while approximate LLR is less accurate but more efficient.

Exact LLR Algorithm
The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being

transmitted versus a 1 bit being transmitted for a received signal. The LLR for a bit, b, is
defined as:

L) - log(Pr(b =0|r= (x,y))]

Pr(b=1|r=(x,y)

Assuming equal probability for all symbols, the LLR for an AWGN channel can be
expressed as:

s,)

e’

L®) = log| =%
—5((x—s,)*H(y=s,)*
5)
ES
Variable Description
r Received signal with coordinates (x, y)

Phase Modulation

Variable Description
b Transmitted bit (one of the K bits in an M-ary symbol, assuming all
M symbols are equally probable)
Sy Ideal symbols or constellation points with bit 0, at the given bit
position
S, Ideal symbols or constellation points with bit 1, at the given bit
position
s In-phase coordinate of ideal symbol or constellation point
X
s Quadrature coordinate of ideal symbol or constellation point
y
o2 Noise variance of baseband signal
o2 Noise variance along in-phase axis
X
o2 Noise variance along quadrature axis
y

Note: Noise components along the in-phase and quadrature axes are assumed to be

independent and of equal power, that is, G?C = 0% =62 / 2.

Approximate LLR Algorithm
Approximate LLR is computed by using only the nearest constellation point to the

received signal with a O (or 1) at that bit position, rather than all the constellation points
as done in exact LLR. It is defined in [2] as:

6=~ L{min((c-0" + -) mip((e- 0.+ 0,7

References

[1] Rappaport, Theodore S. Wireless Communications: Principles and Practice. Upper
Saddle River, NdJ: Prentice Hall, 1996, pp. 238-248.

3-17

3 Digital Modulation

[2] Viterbi, A. J. “An Intuitive Justification and a Simplified Implementation of the
MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications. Vol. 16, No. 2, Feb. 1998, pp. 260-264

Related Examples

. “Estimate BER of 8-PSK in AWGN with Reed-Solomon Coding” on page 9-32
. “Gray Coded 8-PSK” on page 7-15

. “16-PSK with Custom Symbol Mapping” on page 7-56

. “LLR vs. Hard Decision Demodulation”

3-18

Featured Examples

+ “Compensate for Frequency Offset Using Coarse and Fine Compensation” on page
4-2

+ “Correct for Symbol Timing and Doppler Offsets” on page 4-7

+ “Estimate Turbo Code BER Performance in AWGN” on page 4-12
+ “Random Noise Generators” on page 4-16

* “Visualize Effects of Frequency-Selective Fading” on page 4-21

* “Correct Frequency Offset QAM Using Coarse and Fine Synchronization” on page
4-39

* “Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset” on page
4-44

* “Modulate and Demodulate 8-PSK Signal” on page 4-49
* “Binary to Gray Conversion in Simulink” on page 4-52

* “Read Baseband Signal from File” on page 4-53

+ “Write Baseband Signal to File” on page 4-56

* “Detect Binary Preamble in Packet” on page 4-58

* “Detect Complex Preamble in Packet” on page 4-59

4 reatured Examples

Compensate for Frequency Offset Using Coarse and Fine
Compensation

Correct for a phase and frequency offset in a noisy QAM signal using a carrier
synchronizer. Then correct for the offsets using both a carrier synchronizer and a coarse
frequency compensator.

Set the example parameters.

fs = 10000; % Symbol rate (Hz)
sps = 4; % Samples per symbol
M = 16; % Modullation order
k = log2(M); % Bits per symbol

Create a QAM modulator and an AWGN channel.

channel = comm.AWGNChannel ("EbNo*,20, "BitsPerSymbol " ,k, "SamplesPerSymbol*,sps);

Create a constellation diagram object to visualize the effects of the offset compensation
techniques. Specify the constellation diagram to display only the last 4000 samples.

constdiagram = comm.ConstellationDiagram(. ..
"ReferenceConstellation®,qammod(0:M-1,M),
"SamplesPerSymbol ", sps,
"SymbolsToDisplaySource*®, "Property”, "SymbolsToDisplay" ,4000,
“XLimits",[-5 5],°YLimits",[-5 5]);

Introduce a frequency offset of 400 Hz and a phase offset of 30 degrees.
phaseFreqOffset = comm.PhaseFrequencyOffset(...
"FrequencyOffset” ,400, ...
"PhaseOffset”,30,...
"SampleRate*,fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi ([0 M-1],10000,1);
modSig = gammod(data,M);

Create a raised cosine filter object and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter("OutputSamplesPerSymbol*,sps,

Compensate for Frequency Offset Using Coarse and Fine Compensation

"Gain”®,sqrt(sps));
txSig = txFilter(modSig);

Apply the phase and frequency offset, and then pass the signal through the AWGN
channel.

freqOffsetSig = phaseFreqOffset(txSig);
rxSig = channel (freqOffsetSig);

Apply fine frequency correction to the signal by using the carrier synchronizer.
fineSync = comm.CarrierSynchronizer(“DampingFactor®,0.7,
"NormalizedLoopBandwidth®,0.005,
"SamplesPerSymbol*,sps, -
"Modulation®, "QAM™);
rxData = fineSync(rxSig);

Display the constellation diagram of the last 4000 symbols.

constdiagram(rxData)

4-3

4 reatured Examples

.| Constellation Diagram = || =] ER

File Tools VWiew Playback Help &
@-a q-H-18 k

litude

=
[ab]
]
=
(]
=
o
=
5

Processing Frame=1

Even with time to converge, the spiral nature of the plot shows that the carrier
synchronizer has not yet compensated for the large frequency offset. The 400 Hz offset is
1% of the sample rate.

Compensate for Frequency Offset Using Coarse and Fine Compensation

Repeat the process with a coarse frequency compensator inserted before the carrier
synchronizer.

Create a coarse frequency compensator to reduce the frequency offset to a manageable
level.

coarseSync = comm.CoarseFrequencyCompensator(“Modulation®, "QAM*", "SampleRate”,fs*sps);

Pass the received signal to the coarse frequency compensator and then to the carrier
synchronizer.

syncCoarse = coarseSync(rxSig);
rxData = fineSync(syncCoarse);

Plot the constellation diagram of the signal after coarse and fine frequency compensation.

constdiagram(rxData)

4 reatured Examples

4-6

File Tools VWiew Playback Help
@-a q-H-18 k

litu dle

=
[ab]
=
=
(]
=
o
3.
5

In-phase Amplitude

Processing

.| Constellation Diagram = || =

Frame=2

The received data now aligns with the reference constellation.

See Also

comm.CoarseFrequencyCompensator | comm.CarrierSynchronizer

Correct for Symbol Timing and Doppler Offsets

Correct for Symbol Timing and Doppler Offsets

Recover from symbol timing and frequency offset errors by using the
comm.CarrierSynchronizer and comm.SymbolSynchronizer System objects™.

Create System Obijects

Create a QAM modulator and an AWGN channel object.

mod = comm.RectangularQAMModulator(“NormalizationMethod®, "Average power®);

ch = comm_AWGNChannel ("*NoiseMethod®, "Signal to noise ratio (SNR)",
"SNR",20);

Create a matched pair of raised cosine filter objects.

txFilt = comm.RaisedCosineTransmitFilter("FilterSpaninSymbols~,10,
"OutputSamplesPerSymbol*,8);

rxFilt = comm._RaisedCosineReceiveFilter("FilterSpaninSymbols~,10,
"InputSamplesPerSymbol " ,8, "DecimationFactor”,4);

Create a PhaseFrequencyOffset object to introduce a 100 Hz Doppler shift.

doppler = comm.PhaseFrequencyOffset("FrequencyOffset®,100,
"PhaseOffset” ,45, "SampleRate” ,1e6);

Create a variable delay object to introduce timing offsets.

delay = dsp.VariableFractionalDelay;

Create carrier and symbol synchronizer objects to correct for a Doppler shift and a timing
offset, respectively.

carsync = comm.CarrierSynchronizer("SamplesPerSymbol*,2);
symsync = comm.SymbolSynchronizer(...

"TimingErrorDetector”, "Early-Late (non-data-aided)”,
"SamplesPerSymbol*,2);

Create constellation diagram objects to view results.

cdl = comm.ConstellationDiagram(“ReferenceConstellation”,constellation(mod),
"SamplesPerSymbol*,8, "Title", "Received Signal®);

cd2

comm.ConstellationDiagram(“ReferenceConstellation”,constellation(mod),

4-7

4 reatured Examples

"SamplesPerSymbol*®,2,"Title", "Frequency Corrected Signal®);

cd3 = comm.ConstellationDiagram(“ReferenceConstellation”,constellation(mod),
"SamplesPerSymbol*,2,"Title", "Frequency and Timing Synchronized Signal®);

Main Processing Loop
Perform the following operations:

* Generate random symbols and apply QAM modulation.
+ Filter the modulated signal.

* Apply frequency and timing offsets.

* Pass the transmitted signal through an AWGN channel.
+ Correct for the Doppler shift.

+ Filter the received signal.

* Correct for the timing offset.

for k = 1:15
data = randi([0 15],2000,1);
modSig = step(mod,data); % QAM modulate
txSig = step(txFilt,modSig); % Transmit Filter
txDoppler = step(doppler,txSig); % Apply Doppler shift
txDelay = step(delay,txDoppler,k/15); % Apply variable delay
rxSig = step(ch,txDelay); % Add white Gaussian noise
rxFiltSig = step(rxFilt,rxSig); % Receive filter
rxCorr = step(carsync,rxFiltSig); % Correct for Doppler
rxData = step(symsync,rxCorr); % Correct for timing error
end

Visualization

Plot the constellation diagrams of the received signal, the frequency corrected signal,
and the frequency and timing synchronized signal. While specific constellation points
cannot be indentified in the received signal and only partially identified in the frquency
corrected signal, the timing and frequency synchronized signal aligns with the expected
QAM constellation points.

step(cdl,rxSig)

Correct for Symbol Timing and Doppler Offsets

.| Constellation Diagram

Playback
@-a qQ-U-18 k

File Tools Wiew Help

Received Signal

litude

\mp

[1b]
S
=
—
]
i
=]
o
3.
)

Processing

In-phase Amplitude

Frame=1

step(cd2,rxCorr)

4-9

4 reatured Examples

.| Constellation Diagram = || =] ER

File Tools VWiew Playback Help &
@-a q-H-18 k

L[

[1b]
S
=
—
]
i
=]
o
3.
)

1 =
. "‘."t . ® .l‘,ll.r‘ .
R

In-phase Amplitude

Processing Frame=1

step(cd3, rxData)

4-10

Correct for Symbol Timing and Doppler Offsets

.| Constellation Diagram

File Tools View

litude

\mp

[1b]
S
=
—
]
i
=]
o
3.
)

Processing

Playback
@-a qQ-U-18 k

Help &

In-phase Amplitude

Frame=1

See Also

comm.CarrierSynchronizer

comm.SymbolSynchronizer

4-11

4 reatured Examples

Estimate Turbo Code BER Performance in AWGN

4-12

Simulate an end-to-end communication link employing 16-QAM using turbo codes in an
AWGN channel. Estimate the bit error rate.

Initialize Simulation

Set the modulation order and the range of Eb/No values to evaluate. Set the frame length
to 500.

M = 16;
EbNo = (-5:-1);
frmLen = 500;

Initialize the bit error rate vector.

ber = zeros(size(EbNo));

Create a turbo encoder and decoder pair, where the interleaver indices are supplied as
input arguments.

turboEnc = comm.TurboEncoder (" InterleaverindicesSource”, " Input port");

turboDec = comm.TurboDecoder (" InterleaverindicesSource”, " Input port”,
"Numlterations”,4);

Create a QPSK modulator and demodulator pair, where the demodulator outputs soft
bits determined by using a log-likelihood ratio method. The modulator and demodulator
objects are normalized to use an average power of 1 W.

gamModulator = comm.RectangularQAMModulator(“ModulationOrder” ,M,
"Bitlnput®,true,
"NormalizationMethod®, "Average power®);

gamDemodulator = comm.RectangularQAMDemodulator(“ModulationOrder” ,M,
"BitOutput”,true,
"NormalizationMethod®, "Average power-",
"DecisionMethod”, "Log-likelihood ratio”,
"VarianceSource”®, " Input port®);

Create an AWGN channel and an error rate counter.

awgnChannel = comm.AWGNChannel ("EbNo",EbNo, "BitsPerSymbol*®,log2(M));

Estimate Turbo Code BER Performance in AWGN

errorRate = comm.ErrorRate;

Main Processing Loop

The processing loop performs the following steps:

* Generate random binary data

* Generate random interleaver indices

* Turbo encode the data

* Apply 16-QAM modulation

* Pass the modulated signal through an AWGN

channel

* Demodulate the noisy signal using an LLR algorithm

* Turbo decode the data

+ Calculate the error statistics
for k = 1:length(EbNo)

% Initialize error statistics vector,
errorStats = zeros(1,3);

noise variance, and channel Eb/No

noiseVar = 10™M(-EbNo(k)/10)*(1/1o0g2(M));

awgnChannel _EbNo = EbNo(k);

while errorStats(2) < 100 && errorStats(3) < le7

% Generate random binary data
data = randi([0 1],frmLen,1);

% Interleaver indices
intrlvrind = randperm(frmLen);

% Turbo encode the data

encodedData = turboEnc(data, intrlvrind);

% Modulate the encoded data

modSignal = gamModulator(encodedData);

% Pass the signal through the AWGN

channel

receivedSignal = awgnChannel(modSignal);

% Demodulate the received signal

demodSignal = gamDemodulator(receivedSignal ,noiseVar);

4-13

4 reatured Examples

4-14

% Turbo decode the demodulated signal. Because the bit mapping from the
% demodulator is opposite that expected by the turbo decoder, the

% decoder input must use the inverse of demodulated signal.
receivedBits = turboDec(-demodSignal,intrivrind);

% Calculate the error statistics
errorStats = errorRate(data,receivedBits);
end

% Save the BER data and reset the bit error rate object
ber(k) = errorStats(1);
reset(errorRate)

end

Plot the bit error rate and compare it to the uncoded bit error rate.

semi logy(EbNo,ber,"-0%)

grid

xlabel ("Eb/No (dB)*)

ylabel ("Bit Error Rate®)

uncodedBER = berawgn(EbNo, "gam®,M); % Estimate of uncoded BER
hold on

semi logy (EbNo,uncodedBER)
legend("Turbo®, "Uncoded®, " location”, "sw®)

Estimate Turbo Code BER Performance in AWGN

Bit Error Rate

—=— Turbo
Uncoded

-5 -4.5 -4 -3.5 -3 -2.5

Eb/No (dB)

See Also

comm.TurboEncoder | comm.TurboDecoder

4-15

4 reatured Examples

Random Noise Generators

You can generate noise for communication system modeling using the MATLAB Function
block with a random number generator. Both Rayleigh and Rician noise generators are
shown in the example.

Open the model doc_noise_generators.

#i doc_noise_generators - Simulink ['Z' = &J
File Edit View Display Diagram Simulation Analysis Code Tools Help
(1 == el 4
= -8 BEe-E-eg®P = o » Qv
doc_noise_generators
i dac_naise_qenerab:rs bt
@
3
o 4
4 S
rayleigh
To Workspace1
Rayleigh Moke Gen
]
4 "oy
rician Sp—
[T Rician Nose Gen o Warkspace2
b
Ready 100% FixedStepAuto

The noise generators output 1000-by-1 vectors every second, which is equivalent to a
0.001 second sample time.

Run the model. The outputs of the two generators are saved to the MATLAB base
workspace. Plot the histograms of the Rayleigh and Rician variables X and vy,

respectively.

4-16

Random Noise Generators

hist(x,20)
4 Figure 1 =NN=N X
File Edit VWiew Inset Tools Desktop Window Help o

Udde |[MRXODEL- S| 0E ol

140 T T T T T T T

120

100

80

60

40

20

hist(y,20)

4-17

4 Featured Examples
P

-

4| Figure 1 =NNCIN X
File Edit View Inset Tools Desktop Window Help &

Udde | ARRODEL- S| 0E 0D

150

100

50

o

The Rician noise generator has a K-factor of 10, which causes the mean value of the noise
to be larger than that of the Rayleigh distributed noise. Double click on the Rician Noise

Gen block to open the underlying function in the MATLAB editor. Change the K-factor
from 10 to 2.

4-18

Random Noise Generators

-
@ Editor - Block: doc_noise_generators/Rician Moise Gen™

-

MNew Open Save

EDNTOR VIEWW

(] Find Files

i Compare fGoTo > o g
Breakpoints

FILE MAVIGATE

e
T
Build Model | SMULINE
-

[evdoForwardReferenceChannels.m E]_ evdoForwardWaveformGenerator.m K| Rician Moise Gen™ %ﬂl +

[T = R B = VI L I I

e e e e e i e e =
[R R R =]

Efunctiun z = rician

% Rician noise generator that outputs a 1000-by-1 vector every second.

3#codegen

% Define Rician E-factor and sigma

)

- sigma = 1;

% Calculate in-phase and guadrature mean

- mI = sgrt (K)*sigma;
- m2 = =sgrt (K)*=sigma’

= sigma*randn (1000,1) + mI;

- ¥y = sigma*randn (1000,1) + mQ;

- -~z = sgrtix."2 + yv."2);

F% Therefore, the equivalent sample time i= 0.001 =ec.

values

rician

ln & Col 7

4-19

4 Featured Examples

Run the model and plot the histogram of y.
hist(y,20)

Observe that the mean value of the noise has shifted to the left. The histograms of the
Rician and Rayleigh noise are converging. The two generators produce noise having the
same statistics when the Rician K-factor is O.

I ™

4| Figure 1 =NNCIN X
File Edit View Inset Tools Desktop Window Help &

Udde | ARRODEL- S| 0E 0D

14'} T T T T T

120

100

80

60

40

20

4-20

Visualize Effects of Frequency-Selective Fading

Visualize Effects of Frequency-Selective Fading

Pass FSK and QPSK signals through a Rayleigh multipath fading channel. Change the
signal bandwidths to observe the impact of the fading channel on the FSK spectrum and
the QPSK constellation.

FSK Modulation in Flat Fading

Set modulation order to 4, the modulated symbol rate to 45 bps, and the frequency
separation to 200 Hz.

M= 4; % Modulation order
symbolRate = 45; % Symbol rate (bps)
freqSep = 200; % Frequency separation (Hz)

Calculate the samples per symbol parameter, sampPerSym, as a function of the
modulation order, frequency separation, and symbol rate. To avoid output signal aliasing,
the product of sampPerSym and symbolRate must be greater than the product of M and
freqSep. Calculate the sample rate of the FSK output signal.

sampPerSym = ceil(M*freqSep/symbolRate);
fsamp = sampPerSym*symbolRate;

Create an FSK modulator.

fskMod = comm.FSKModulator(M,
"FrequencySeparation”,freqSep,
“SamplesPerSymbol ® ,sampPerSym,
“SymbolRate”,symbolRate);

Set the path delays and average path gains for the fading channel.

pathDelays = [0 3 10]*1le-6; % Discrete delays of three-path channel (s)
avgPathGains = [0 -3 -6]; % Average path gains (dB)

By convention, the delay of the first path is typically set to zero. For subsequent paths,
a 1 microsecond delay corresponds to a 300 m difference in path length. The path delays
and path gains specify the average delay profile of the channel.

Create a Rayleigh channel using the defined parameters. Set the Visualization
property to display the impulse and frequency responses.

channel = comm.RayleighChannel (...
“SampleRate” ,fsamp,

4-21

4 reatured Examples

"PathDelays” ,pathDelays,

"AveragePathGains” ,avgPathGains,
"MaximumDopplerShift®,0.01,

"Visualization®, "Impulse and frequency responses”,
"SamplesToDisplay”, "10%");

Generate random data symbols and apply FSK modulation.

data = randi([0 3],2000,1);
modSig = fskMod(data);

Plot the spectrum of the FSK modulated signal.

spectrum = dsp.SpectrumAnalyzer("SampleRate”,fsamp);
spectrum(modSig)

4| Spectrum Analyzer o | =] 28
File Tools View Playback Help k]

B-| -5 H@HEN

Processing REVY=731 02 mHz Sample Rate=810Hz T=0

4-22

Visualize Effects of Frequency-Selective Fading

The modulated signal is composed of four tones each having approximately 20 dBm peak
power separated by 200 Hz.

Pass the signal through the Rayleigh fading channel and apply AWGN having a 25 dB
signal-to-noise ratio.

snrdB = 25;

rxSig = awgn(channel (modSig),snrdB);
4| Impulse Respanse =1 =S
File Tools View Playback Help o

@-| & - |G| &

1]
=
=
=
m

Processing

4-23

4 reatured Examples

4-24

.| Frequency Response = || =] ER
File Tools VWiew Playback Help &

- |- L] 1A M

100

Frequency [(Hz)
Processing REW=270Hz Sample Rate=810 Hz

The impulse and frequency responses show that the channel behaves as though it were
flat. This is because the signal bandwidth, 800 Hz, is much smaller than the coherence
bandwidth, 50 kHz.

Plot the received signal spectrum.

spectrum(rxSig)

Visualize Effects of Frequency-Selective Fading

4| Spectrum Analyzer o= || =&

File Tools

ls - | & - (5] [X] & M U [

Processing

Wiew Playback Help k!

REWY=791.02mHz Sample Rate=810Hz |T=44.4444

The four tones comprising the FSK signal maintain the same frequency separation and
peak power levels relative to each other. The absolute peak power levels have decreased
due to the fading channel.

FSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 45 kbps and the frequency separation to 200 kHz. Calculate
the new samples per symbol and sample rate parameters.

symbolRate = 45e3;

freqSep = 200e3;

sampPerSym = ceil(M*freqSep/symbolRate);
fsamp = sampPerSym*symbolRate;

Update the FSK modulator properties.

4-25

4 reatured Examples

release(fskMod)

fskMod.SymbolRate = symbolRate;
fskMod.FrequencySeparation = freqSep;

Update the spectrum analyzer sample rate property, sa.SampleRate. Apply FSK
modulation and plot the resulting spectrum.

release(spectrum)
spectrum._SampleRate =

modSig = fskMod(data);
spectrum(modSig)

sampPerSym*symbolRate;

4| Spectrum Analyzer
File Tools View Playback Help

s -| & -| (| X & [N (L]]

Processing

REW=T91 02 Hz |Sample Rate=810kHz |T=0

The spectrum has the same shape as in the flat-fading case but the four tones are now

separated by 200 kHz.

4-26

Visualize Effects of Frequency-Selective Fading

Update the channel sample rate property. Pass the signal through the Rayleigh fading

channel and apply AWGN.

release(channel)
channel .SampleRate = fsamp;

rxSig = awgn(channel (modSig),25);

4| Impulse Response

File Tools View Playback Help

CMEMIEN=E

Processing

Path Gains

4-27

4 reatured Examples

.| Frequency Response = || =] ER
File Tools VWiew Playback Help &

- |- L] 1A M

Processing REW=47 B5 kHz |Sample Rate=810 kHz

The impulse and frequency responses show that the multipath fading is frequency
selective.

Plot the received signal spectrum.

spectrum(rxSig)

4-28

Visualize Effects of Frequency-Selective Fading

4| Spectrum Analyzer o= || =&

File Tools

ls - | & - (5] [X] & M U [

Processing

Wiew Playback Help k!

REVY=721.02 Hz Sample Rate=310kHz |T=0.044444

There are still four identifiable tones but their relative peak power levels differ due to the
frequency-selective fading. The signal bandwidth, 800 kHz, is larger than the coherence
bandwidth, 50 kHz.

QPSK Modulation in Flat Fading
Set the symbol rate parameter to 500 bps.
symbolRate = 500;

Generate random data symbols and apply QPSK modulation.

data = randi ([0 3],10000,1);
modSig = pskmod(data,4,pi/4,"gray”);

4-29

4 reatured Examples

Create a Rayleigh channel using the defined parameters. Set the Visual ization
property to display the impulse and frequency responses.

fsamp = symbolRate;
channel = comm.RayleighChannel (...
"SampleRate” ,fsamp,
"PathDelays”,pathDelays,
"AveragePathGains” ,avgPathGains,
“*MaximumDopplerShift®,0.01,
"Visualization®, "Impulse and frequency responses®);

Pass the signal through the Rayleigh channel and apply AWGN.

rxSig = awgn(channel(modSig),25);

4-30

Visualize Effects of Frequency-Selective Fading

4| Impulse Response = || =] ER
File Tools VWiew Playback Help &

@-| |- |E &K

Path Gain
£ Channel Filter Co

[ak]
=
|
5=
(=]
m

Processing

4-31

4 reatured Examples

.| Frequency Response = || =] ER
File Tools VWiew Playback Help &

- |- L] 1A M

i i
. o

Frequency [(Hz)
Processing REW=16E 67 Hz |Sample Rate=500 Hz

The impulse and frequency responses show that the channel behaves as though it were
flat. This is because the signal bandwidth, 500 Hz, is much smaller than the coherence
bandwidth, 50 kHz. Alternatively, the delay span of the channel (10 microseconds) is
much smaller than the QPSK symbol period (2 milliseconds) so the resultant bandlimited
impulse response is approximately flat.

Plot the constellation.

constDiagram = comm.ConstellationDiagram;

4-32

Visualize Effects of Frequency-Selective Fading

constDiagram(rxSig)

.| Coanstellation Diagram == 2

File Tools View Playback Help N
@-a q-H-18 k1

\my

@
=
=
4]
.
=
[44]
3.
)

Processing Frame=1

The QPSK constellation shows the effects of the fading channel; however, the signal still
has four identifiable states.

4-33

4 reatured Examples

QPSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 500 kbps and update the related channel property. Pass the
signal through the Rayleigh channel and apply AWGN.

symbolRate = 500e3;

release(channel)
channel .SampleRate = symbolRate;

rxSig = awgn(channel (modSig),25);

4-34

Visualize Effects of Frequency-Selective Fading

4| Impulse Response = || =] ER

File Tools VWiew Playback Help &

@-| |- |E &K

[ak]
=
|
5=
(=]
m

Processing

4-35

4 reatured Examples

4-36

.| Frequency Response

File Tools VWiew Playback Help

- |- L] 1A M

Processing

REVY=33.71 kHz Sample Rate=200 kHz

The impulse and frequency responses show that the multipath fading is frequency

selective.

Plot the constellation.

constDiagram(rxsSig)

Visualize Effects of Frequency-Selective Fading

.| Constellation Diagram

File Playback

@-a qQ-U-18 k

Tools View

i

i

b}
‘5
=
]
o
o
=
(.}

In-pl

Processing

Help

iase Amplitude

Frame=2

As the signal bandwidth is increased from 500 Hz to 500 kHz, the signal becomes
highly distorted. This distortion is due to the intersymbol interference (ISI) that
comes from time dispersion of the wideband signal. The delay span of the channel (10
microseconds) is now larger than the QPSK symbol period (2 microseconds) so the

4-37

4 reatured Examples

resultant bandlimited impulse response is no longer flat. Alternatively, the signal
bandwidth is much larger than the coherence bandwidth, 50 kHz.

4-38

Correct Frequency Offset QAM Using Coarse and Fine Synchronization

Correct Frequency Offset QAM Using Coarse and Fine
Synchronization

Correct phase and frequency offsets for a QAM signal in an AWGN channel. Coarse
frequency estimator and carrier synchronizer System objects™ are used to compensate
for a significant offset.

Set the example parameters.

fs = 10000; % Sample rate (Hz)
sps = 4; % Samples per symbol
M = 16; % Modullation order
k = log2(M); % Bits per symbol

Create an AWGN channel System object™.

awgnChannel = comm.AWGNChannel ("EbNo*,15, "BitsPerSymbol*,k, "SamplesPerSymbol " ,sps);

Create a pulse shaping filter

txFilter = comm.RaisedCosineTransmitFilter(...
"OutputSamplesPerSymbol®,sps);

rxFilter = comm.RaisedCosineReceiveFilter(...
" InputSamplesPerSymbol ", sps,
"DecimationFactor®, sps);

Create a constellation diagram object to visualize the effects of the carrier
synchronization.

constDiagram = comm.ConstellationDiagram(. ..
"ReferenceConstellation”,qammod(0:M-1,M),
"XLimits®,[-5 5], "YLimits",[-5 5]);

Create a QAM coarse frequency estimator to roughly estimate the frequency offset. This
is used to reduce the frequency offset of the signal passed to the carrier synchronizer. In
this case, a frequency estimate to within 10 Hz is sufficient.

coarse = comm.QAMCoarseFrequencyEstimator(*SampleRate*,fs,
"FrequencyResolution®,10);

Create a carrier synchronizer System object. Because of the coarse frequency correction,
the carrier synchronizer will converge quickly even though the normalized bandwidth is
set to a low value. Lower normalized bandwidth values enable better correction.

4-39

4 reatured Examples

4-40

fine = comm.CarrierSynchronizer(...
"DampingFactor®,0.7, ...
"NormalizedLoopBandwidth®,0.005,
"SamplesPerSymbol " ,sps, - ..
"Modulation®, "QAM™);

Create phase and frequency offset objects. pfo is used to introduce a phase and
frequency offset of 30 degrees and 250 Hz, respectively. pfc is used to correct the offset
in the received signal by using the output of the coarse frequency estimator.

pfo = comm.PhaseFrequencyOffset(...
"FrequencyOffset”,250,...
"PhaseOffset”,30, ...
"SampleRate” ,fs);

pfc = comm.PhaseFrequencyOffset("FrequencyOffsetSource”, "Input port”,
"SampleRate”,fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi ([0 M-1],10000,1);
txSig = txFilter(gammod(data,M));

Pass the signal through an AWGN channel and apply a phase and frequency offset.

rxSig = awgnChannel (pfo(txSig));

Estimate the frequency offset and compensate for it using PFC. Plot the constellation
diagram of the output, syncCoarse. From the spiral nature of the diagram, you can see
that the phase and frequency offsets are not corrected.

freqEst = coarse(rxSig);
syncCoarse = pfc(rxSig,-fregEst);
constDiagram(syncCoarse)

Correct Frequency Offset QAM Using Coarse and Fine Synchronization

.| Constellation Diagram

litu dle

=
[ab]
=
=
(]
=
o
3.
5

Processing

File Tools View Playback
@-a q-H-18 k

Help &

In-phase Amplitude

Frame=1

Apply fine frequency correction to the signal by using the carrier synchronizer object.

rxData = rxFilter(fine(syncCoarse));

4-41

4 reatured Examples

Display the constellation diagram of the last 1000 symbols. You can see that these
symbols are aligned with the reference constellation because the carrier synchronizer has
converged to a solution.

release(constDiagram)
constDiagram(rxData(9001:10000))

4-42

Correct Frequency Offset QAM Using Coarse and Fine Synchronization

.| Constellation Diagram

File Tools View Playback

Help

@-a qQ-U-18 k

litu dle

=
[ab]
=
=
(]
=
o
3.
5

Processing

In-ph

ase Amplitude

Frame=1

4-43

4 reatured Examples

Adjust Carrier Synchronizer Damping Factor to Correct Frequency
Offset

Attempt to correct for a frequency offset using the carrier synchronizer object. Increase
the damping factor of the synchronizer and determine if the offset was corrected.

Set the modulation order, sample rate, frequency offset, and signal-to-noise ratio
parameters.

M = 8;

fs = le6;
foffset = 1000;
snrdb = 20;

Create a phase frequency offset object to introduce a frequency offset to a modulated
signal. Create a constellation diagram object.

pfo = comm.PhaseFrequencyOffset("SampleRate”,fs,
"FrequencyOffset”, foffset);
constDiagram = comm.ConstellationDiagram(“ReferenceConstellation”,pskmod(0:M-1,M,pi/M)’

Create a carrier synchronizer object to correct for the frequency offset.

carriersync = comm.CarrierSynchronizer("Modulation™, "8PSK",
"DampingFactor”,0.05, "Normal izedLoopBandwidth®,0.01);

The main processing loop includes these steps:

* Generate random data.
* Apply 8-PSK modulation.
* Introduce a frequency offset.
* Pass the signal through an AWGN channel.
* Correct for the frequency offset.
* Display the constellation diagram.
for k = 1:200
data = randi([0 M-1],1000,1);
modSig = pskmod(data,M);
t>xSig pfo(modSig);

rxSig awgn(txSig,snrdb);
syncOut = carriersync(rxSig);

4-44

Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset

constDiagram(syncOut)
end

File Tools View Playback Help
®-a a- -85k

il itu de

\mip

O
_
=

=
4]

=
[4]
o |
=
J

In-phase Amplitude

Proceszing

4. Canstellation Diagram =

Frame=200

The constellation points cannot be clearly identified indicating that the carrier

synchronizer is unable to compensate for the frequency offset.

4-45

4 reatured Examples

4-46

Determine the normalized pull-in range, the maximum frequency lock delay, and the
maximum phase lock delay by using the info function.

synclnfo = info(carriersync)

syncinfo
struct with fields:
NormalizedPull InRange: 0.0044

MaxFrequencylLockDelay: 78.9568
MaxPhaselLockDelay: 130

Convert the normalised pull-in range from radians to cycles. Compare the normalized
frequency offset to the pull-in range.

[foffset/fs syncinfo.NormalizedPulllnRange/(2*pi)]

ans =
1.0e-03 *

1.0000 0.7071

The offset is greater than the pull-in range. This is reason that the carrier synchronizer
failed to correct the frequency offset.

Change the damping factor of the synchronizer to 0.707.

carriersync.DampingFactor = 0.707;

Repeat the main processing loop.

for k = 1:200
data = randi([0 M-1],1000,1);
modSig = pskmod(data,M);
txSig = pfo(modSig);
rxSig = awgn(txSig,snrdb);
syncOut = carriersync(rxSig);
constDiagram(syncOut)

Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset

end
4| Canstellation Diagram == 2
File Tools View Playback Help N

@-a qa-[H-18 k

\my

@
=
=
4]
.
=
[44]
3.
)

Processing Frame=400

There are now eight observable clusters, which shows that the frequency offset was
corrected.

4-47

4 reatured Examples

Determine the new pull-in range. The normalized offset is less than the pull-in range.
This explains why the carrier synchronizer was able to correct the offset.

syncInfo = info(carriersync);
[foffset/fs syncinfo.NormalizedPullInRange/(2*pi)]

ans =

0.0010 0.0100

4-48

Modulate and Demodulate 8-PSK Signal

Modulate and Demodulate 8-PSK Signal

Open the 8-PSK model. The model generates an 8-PSK signal, applies white noise,
displays the resulting constellation diagram, and computes the error statistics.

|—> T
L = ML * Emrar Rate
Random . Calculation
Integer » B-PSH » AWGN » 8-PSK | R
M-PSK M-FEK
Modulatar Demaodulator
Baseband Baseband

Constellation Diagram

Run the model.

4-49

4 reatured Examples

.| Constellation Diagram = || =] ER

File “iew Simulation Help &

-5 0r® -8k

LTI

&
=
=
4]
-
[47]
|
()

-1 0.5 0
In-phase Amplitude
Ready T=100.0(

The error statistics are collected in vector ErrorVec. Because Eb/No 1s 15 dB, there are
no measured symbol errors.

Number of symbol errors = 0

Change the Eb/No of the AWGN Channel block from 15 dB to 5 dB. The increase in the
noise is shown in the constellation diagram.

4-50

Modulate and Demodulate 8-PSK Signal

.| Constellation Diagram = || =] ER

File “iew Simulation Help &

-5 0r® -8k

ymiplitude

4B
—
1
4]
=
w

]y

Feady T=100.00

Because of the increase in the noise level, the number of symbol errors is greater than
Zero.

Number of symbol errors = 13

4-51

4 reatured Examples

Binary to Gray Conversion in Simulink

Open the Binary-to-Gray model. The model converts a binary sequence to a Gray-coded
sequence and vice versa by using Data Mapper blocks.

Run the model.

The Display blocks show the natural binary and Gray-coded sequence ordering.

07 8 Diata 8
’ Binary a Mapper Gray]
Constant
ntan Binary -= Gray

JI1 111K

Data
] Mapper Binary a

Gray -= Binary

4-52

Read Baseband Signal from File

Read Baseband Signal from File

Reads a baseband signal from a saved file.

1 Load the model by typing doc_baseband_reader_example at the command line.

Baseband
File P |u g |:|
Reader
Time
Scope

2 Run the model.

4-53

4 reatured Examples

-

ESREERTS)

4| Time Scope

File Tools View Simulation Help &

G- OO - Q-E-|FH-

Jak}
a]
=
=
g
<

Ready T="12000.001

4-54

The file, example.bb, contains 10,000 samples having a sample rate of 1 Hz. The
model runs for 12,000 s, which exceeds the amount of saved data. As a result, the
last 2000 samples are zero padded.

3 Open the Baseband File Reader block, and click on the Repeatedly read the file
check box. Rerun the model.

Read Baseband Signal from File

-

4| Time Scope | o | E |i3_r

File Tools View Simulation Help &

G- OO - Q-E-|FH-

Ready T="12000.001

After 10,000 s, the file is read again so the samples from 10,000 to 12,000 s are a
repeat of the first 2000 samples.

4-55

4 reatured Examples

Write Baseband Signal to File

Generate and write a QPSK-modulated signal to a file. Then, read the file and plot the
constellation diagram of the signal.

1 Type doc_baseband_writer_exl at the command prompt to open the first model.

Randam _I_l_h’\""\.,ﬁi"l, ™ il Baseband
P g QFSK g AWGH g File
=g Writer

2 Run the model. The noisy QPSK data is saved to file bbw_example.bb.
3 Close the model. Type doc_baseband_writer_ex2 at the command prompt to open
the second model.

Baseband
File
Reader

Y

Constellation Diagram

4 Run the model. The saved data is displayed by the constellation diagram.

4-56

Write Baseband Signal to File

4. Constellation Diagram | = | [E] |i3-]
File Tools View Simulation Help &
- OP® = a-&- &bk

LTI

[ah]
|-
—
—
]
=]
L]
=
J

In-pl
Ready

iase Amplitude
T=10.00

4-57

4 reatured Examples

Detect Binary Preamble in Packet

Open the Detect Binary Preamble model. The model creates a 40-bit packet consisting
of two 6-bit preamble sequences and two 14-bit random data sequences. Detect the
preamble locations by using the Preamble Detector block.

Run the model.

[Ex1]
(el T &l [§
Preambla [14xﬁ [40m1] Preamble [401] = 26
_r [40x1] Detector [#0:1]
[Bx1]

Bermoulli [141]
Binal -
” i Eecmr Display
Concatenate
Eernoulli [14x1]
Binary

The display shows the numbers 6 and 26. These correspond to the locations at the end of
the two preambles.

4-58

Detect Complex Preamble in Packet

Detect Complex Preamble in Packet

Open the model. The model creates a packet by generating a complex preamble and
prepending it to a sequence of QPSK symbols. The packet passes through a noisy channel
and is input to a Preamble Detector block. The preamble locations and the detection
metric outputs are displayed by two Time Scope blocks.

E e— T o —]
Idx
- aPsK »
. @ » AWGN p| Preamble
1

Detector
Preambla Preamble

= Dt Location
Madrix
Concatenate

_|_l_hN\.ﬂfL Detection
Random QPsK Metric
Integer

Random Integer
Generator1

Run the model.

4-59

4 reatured Examples

4| Detection Metric = || =] ER
File Tools View Simulation Help &
G- 0P ® - a- 324 H-

Detection Mefric

Ime (Secs)

Ready T=5.000

4-60

Detect Complex Preamble in Packet

4| Preamble Location = [=] 3
File Tools View Simulation Help
S -| G @ [P Ly - |:‘:| - 4p L -

FPreamble Location Index

Q
=
3
=
=3
=
I

Ime (secs)

Ready T=5.000

There are many preamble locations shown for each 1 s frame. This is because the
detection metric exceeds the threshold multiple times in each frame. This indicates that
the detection threshold is too low. Ideally, there should only be a single location shown
for each frame because there is only one preamble. Looking at the detection metric plot,
it suggests that a threshold of 15 will result in the selection of the peak detection metric.

Change the detection threshold from 3 to 15. Rerun the model.

4-61

4 reatured Examples

4| Preamble Location = [=] 3
File Tools View Simulation Help &
S -| G @ [P Ly - |:‘:| - 4p L -

Freamble Location Index

Q
=
3
=
=3
=
I

Ready T=5.000

In each frame, the location index is 16. This is correct because the preamble is 16
symbols long.

4-62

Adaptive Equalizer Examples

+ “Adaptive Equalization” on page 5-2

+ “Adaptive Equalization” on page 5-13

+ “Equalize BSPK Signal” on page 5-25

* “Compare RLS and LMS Algorithms” on page 5-29

5 Adaptive Equalizer Examples

Adaptive Equalization

This example shows how to a model a communication link with PSK modulation, raised
cosine pulse shaping, multipath fading, and adaptive equalization.

The example sets up three equalization scenarios, and calls a separate script to
execute the processing loop multiple times for each scenario. Each call corresponds to
a transmission block. The pulse shaping and multipath fading channel retain state
information from one block to the next. For visualizing the impact of channel fading on
adaptive equalizer convergence, the simulation resets the equalizer state every block.

To experiment with different simulation settings, you can edit the example. For instance,
you can set the ResetBeforeFi ltering property of the equalizer object to 0, which will
cause the equalizer to retain state from one block to the next.

Transmission Block

Set parameters related to the transmission block which is composed of three parts:
training sequence, payload, and tail sequence. All three use the same PSK scheme; the
training and tail sequences are used for equalization. We use the default random number
generator to ensure the repeatability of the results.

Rsym = le6; % Symbol rate (Hz)

nTrain = 100; % Number of training symbols

nPayload = 400; % Number of payload symbols

nTail = 20; % Number of tail symbols

% Set random number generator for repeatability

hStream = RandStream.create("mt19937ar”, "seed", 12345);
PSK Modulation

Configure the PSK modulation and demodulation System objects™.

bitsPerSym = 2; % Number of bits per PSK symbol
M = 27bitsPerSym; % Modullation order
hPSKMod = comm.PSKModulator(M,

"PhaseOffset”,0, .
"SymbolMapping®, "Binary");
hPSKDemod = comm.PSKDemodulator(M,

"PhaseOffset”,0, .
"SymbolMapping®, "Binary");

PSKConstellation = constellation(hPSKMod)."; % PSK constellation

Adaptive Equalization

Training and Tail Sequences

Generate the training and tail sequences.

XTrainData = randi(hStream, [0 M-1], nTrain, 1);
xTailData = randi(hStream, [0 M-1], nTail, 1);
xTrain = step(hPSKMod,xTrainData);
xTail = step(hPSKMod,xTai lData) ;

Transmit and Receive Filters

Configure raised cosine transmit and receive filter System objects. The filters incorporate
upsampling and downsampling, respectively.

chanFilterSpan = 8; % Filter span in symbols

sampPerSymChan = 4 % Samples per symbol through channels

hTxFilt = comm.RaisedCosineTransmitFilter(...
"RolloffFactor®,0.25, ...
"FilterSpaninSymbols”®,chanFilterSpan, ...
"OutputSamplesPerSymbol " ,sampPerSymChan) ;

hRxFilt = comm.RaisedCosineReceiveFilter(...
"RolloffFactor®,0.25, ...
"FilterSpaninSymbols”®,chanFilterSpan, ...
"InputSamplesPerSymbol " ,sampPerSymChan, ...
"DecimationFactor” ,sampPerSymChan) ;

% Calculate the samples per symbol after the receive filter
sampPerSymPostRx = sampPerSymChan/hRxFilt._DecimationFactor;
% Calculate the delay in samples from both channel filters

chanFilterDelay = chanFilterSpan*sampPerSymPostRx;

AWGN Channel

Configure an AWGN channel System object with the NoiseMethod property set to
Signal to noise ratio (Es/No) and Es/No set to 20 dB.

hAWGNChan = comm.AWGNChannel(...
"NoiseMethod®, "Signal to noise ratio (Es/No)", ...
"EsNo”,20, ...
"SamplesPerSymbol ", sampPerSymChan) ;

5 Adaptive Equalizer Examples

Simulation 1: Linear Equalization for Frequency-Flat Fading

Begin with single-path, frequency-flat fading channel. For this channel, the receiver uses
a simple 1-tap LMS (least mean square) equalizer, which implements automatic gain and
phase control.

The script commadapteqloop.m runs multiple times. Each run corresponds to a
transmission block. The equalizer resets its state and weight every transmission block.
To retain state from one block to the next, you can set the ResetBeforeFiltering
property of the equalizer object to False.

Before the first run, commadapteqloop.m displays the Rayleigh channel System object
and the properties of the equalizer object. For each run, a MATLAB figure shows signal
processing visualizations. The red circles in the signal constellation plots correspond

to symbol errors. In the "Weights" plot, blue and magenta lines correspond to real and
imaginary parts, respectively.

simName = "Linear equalization for frequency-flat fading®; % Used to label figure winc

% Configure a frequency-flat Rayleigh channel System object with the
% RandomStream property set to "mtl9937ar with seed® for repeatability.
hRayleighChan = comm.RayleighChannel(...

“SampleRate” ,Rsym*sampPerSymChan,

MaximumDopplerShift®,30);

% Configure an adaptive equalizer object

nWeights = 1; % Single weight

stepSize = 0.1; % Step size for LMS algorithm

alg = Ims(stepSize); % Adaptive algorithm object

eqObj = lineareq(nWeights,alg,PSKConstellation); % Equalizer object
% Delay in symbols from the equalizer

eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

% Link simulation
nBlocks = 50; % Number of transmission blocks in simulation
for block = 1:nBlocks
commadapteqloop;
end

System: comm.RayleighChannel

Properties:
SampleRate: 4000000
PathDelays: O

Adaptive Equalization

AveragePathGains: 0O
NormalizePathGains: true
MaximumDopplerShift: 30
DopplerSpectrum: [1x1 struct]
RandomStream: "mtl19937ar with seed”
Seed: 73
PathGainsOutputPort: false

EqType: “Linear Equalizer-
AlgType: "LMS*
nWeights: 1
nSampPerSym: 1
RefTap: 1
SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000
StepSize: 0.1000
LeakageFactor: 1
Weights: O
Weightlnputs: O
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

5 Adaptive Equalizer Examples

r '
B Frequency-flat fading EIEI&J

File Edit View Inset Tools Desktop Window Help N

Received constellation

2 Equalizer weights
1
1
| » |
1
BER=0.14 -1
2

-2 -1 0 1 2

Equalized constellation

Equalizer learning curve

1 - rp
o =10}
=
™
E L

0 : "
=20
L
-
BER=0.11 . : : : :
2 ’ [} 100 200 300 400 500
2 0 1 2 Symbol index
Block 50
L &

Simulation 2: Linear Equalization for Frequency-Selective Fading

Simulate a three-path, frequency-selective Rayleigh fading channel. The receiver uses an
8-tap linear RLS (recursive least squares) equalizer with symbol-spaced taps.

simName = “Linear equalization for frequency-selective fading”;

% Reset transmit and receive filters
reset(hTxFilt);

Adaptive Equalization

reset(hRxFilt);

% Set the Rayleigh channel System object to be frequency-selective
release(hRayleighChan);

hRayleighChan.PathDelays = [0 0.9 1.5]/Rsym;
hRayleighChan.AveragePathGains = [0 -3 -6];

% Configure an adaptive equalizer

nWeights = 8;

forgetFactor = 0.99; % RLS algorithm forgetting factor
alg = ris(forgetFactor); % RLS algorithm object

eqObj = lineareq(nWeights,alg,PSKConstellation);

eqObj -RefTap = 3; % Reference tap

eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

% Link simulation and store BER values
BERvect = zeros(l,nBlocks);
for block = 1:nBlocks
commadapteqloop;
BERvect(block) = BEREQ;
end
avgBER2 = mean(BERvect)

System: comm.RayleighChannel

Properties:
SampleRate: 4000000
PathDelays: [0 9e-07 1.5e-06]
AveragePathGains: [0 -3 -6]
NormalizePathGains: true
MaximumDopplerShift: 30
DopplerSpectrum: [1x1 struct]
RandomStream: "mtl19937ar with seed”
Seed: 73

PathGainsOutputPort: false

EqType: “Linear Equalizer-
AlgType: "RLS*
nWeights: 8
nSampPerSym: 1
RefTap: 3
SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000
ForgetFactor: 0.9900
InvCorrinit: 0.1000
InvCorrMatrix: [8x8 double]

5 Adaptive Equalizer Examples

avgBER2 =

Weights:

Weightlnputs:
ResetBeforeFiltering:
NumSamplesProcessed:

3.0000e-04

L
L
1
0

0000O0O0O0DO0]
000O0O0O0OO0DO0]

-
- Linear equalizaticn for frequency-selective fading

Eile

Edit

View Inset Tools Desktop Window Help

Received constellation

Equalized constellation

2
i *
o ¥ M
R i
BER=0

2

2 4 0 1
Block 50

lef* (dB)

Equalizer weig hts

Equalizer learning curve

L ki

Symbal index

|
|
500

5-8

Adaptive Equalization

Simulation 3: Decision feedback Equalization (DFE) for Frequency-Selective Fading

The receiver uses a DFE with a six-tap fractionally spaced forward filter (two samples
per symbol) and two feedback weights. The DFE uses the same RLS algorithm as in
Simulation 2. The receive filter structure is reconstructed to account for the increased
number of samples per symbol.

simName = "Decision feedback equalization (DFE) for frequency-selective fading”;

% Reset transmit filter and adjust receive Tilter decimation factor
reset(hTxFilt);

release(hRxFilt);

hRxFilt.DecimationFactor = 2;

sampPerSymPostRx = sampPerSymChan/hRxFilt.DecimationFactor;
chanFilterDelay = chanFilterSpan*sampPerSymPostRx;

% Reset fading channel
reset(hRayleighChan);

% Configure an adaptive equalizer object

nFwdWeights = 6; % Number of feedforward equalizer weights

nFbkWeights = 2; % Number of feedback filter weights

eqObj = dfe(nFwdWeights, nFbkWeights,alg,PSKConstellation,sampPerSymPostRx) ;
eqObj .RefTap = 3;

eqgDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

for block = 1:nBlocks
commadapteqloop;
BERvect(block) = BEREQ;

end

avgBER3 = mean(BERvect)

System: comm.RayleighChannel

Properties:
SampleRate: 4000000
PathDelays: [0 9e-07 1.5e-06]
AveragePathGains: [0 -3 -6]
NormalizePathGains: true
MaximumDopplerShift: 30
DopplerSpectrum: [1x1 struct]
RandomStream: "mtl19937ar with seed”
Seed: 73

PathGainsOutputPort: false

5 Adaptive Equalizer Examples

EqType: "Decision Feedback Equalizer*
AlgType: "RLS*
nWeights: [6 2]
nSampPerSym: 2
RefTap: 3
SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000
ForgetFactor: 0.9900
InvCorrinit: 0.1000
InvCorrMatrix: [8x8 double]
Weights: [0 00O 00O
Weightlnputs: [O 0 0 0 00
ResetBeforeFiltering: 1
NumSamplesProcessed: 0

0 0]
0 0]

avgBER3 =

0

5-10

Adaptive Equalization

- Ty
n Decision feedback equalization (DFE) for frequency-selective fading l = | [E] éj

File Edit View Inset Tools Desktop Window Help &

Received constellation

Equalizer weig hts

Equalized constellation

e Equalizer learning curve
0 - -
1
o =10}
0 =
5 -20¢
-1
BER=0 30 : : : :
2 0 100 200 300 400 500
2 - 0 1 2 Symbol index
Block 50
e A
Summary

This example showed the relative performance of linear and decision feedback equalizers
in both frequency-flat and frequency-selective fading channels. It showed how a one-tap
equalizer is sufficient to compensate for a frequency-flat channel, but that a frequency-
selective channel requires an equalizer with multiple taps. Finally, it showed that a
decision feedback equalizer is superior to a linear equalizer in a frequency-selective
channel.

5-11

5 Adaptive Equalizer Examples

Appendix

This example uses the following script and helper functions:

commadapteqgloop.m

commadapteq_checkvars.m

commadapteq_graphics.m

5-12

Adaptive Equalization

Adaptive Equalization

This model shows the behavior of adaptive equalizer algorithms at a receiver for
modulated data transmitted along a channel.

Structure of the Example

The example includes two equalizers, a reference equalizer that uses the least means
square (LMS) algorithm and a configurable equalizer whose algorithm you can select
from these choices:

* Least Mean Square (LMS)

+ Sign LMS

* Normalized LMS

* Variable Step-Size LMS

* Recursive Least Squares (RLS)

+ Constant Modulus Algorithm (CMA)

The example also creates plots that can help you understand how different algorithms
behave.

On the MATLAB command line, open the model doc_equalizationsim.

doc_equalizationsim

5-13

5 Adaptive Equalizer Examples

ki doc_equalizationsim =NREN X
File Edit View Display Diagram Simulation Analysis Code Tools Help
= -5 EE-E-4OP 1 @ o e v @ @
doc_equalizationsim
@
Adaptive Equalization: LMS, RLS and CMA
£l Reference Equalizer
—»(inDes
@ (o= . LMS Equalizer P While running the simulation,
— uk} AxSgral step size =0.01 deuble-click on the blocks
1o open or close scopes
3 LM nput
= ualized
= N :) [Gre)
_ = QAM v -p Desied LMS Linear Equalizer
= > Wit Il outt
Random Integer General QAN Channal Node! fe f—>|!n =
Generatar Modulstor —
Beseband Reference Equalizer eshape
LMS Linear Equalizer Coafis
Decision Directed
Eaualized tapsRef
lIh‘“" ————p{taps Flot Results
o Use the Initial Settings block
to set the parameters for chCoeff
Tesining Made the Configurable Equalizer E
Model Double-click on the block -) Cutput m
 Parameters to set simulation parameters Desiad RLS Linesr Equalizer
- N [V, Wisf—pwini Outi
ad
Flot Vihen the Number of equalizer coefficients is equal to 2 and the Cenfigurable Subsystem Reshape
Cost Symbol constellation is set to BPSK, double-click on the block to plot RLS Linesr Equslizer Costle
Function the MSE Cost function. In the plot, select the Initial conditions
for the equalizer coefficients
General QAM BER Results General QAM
Demodulstr Reference LMS D;‘mduia;ﬂ BER Results
Baseband! s
Wi o (E— warr| [> oo L1
or Rate
L
General b plpe Ertor Rate L 5 out General R oolculation [
B Calculstion QAM
- Error Rate Caloulation
-'_"" Double-click on the switch block P P
- o rosot the BER cotnter Copyright 2008-2014 The MathWorks, Inc.
»
Ready 100% VariableStepDiscrete

Experimenting with the Example
This example provides several ways for you to change settings and observe the results.
Initial Settings

The Model Parameters block enables you to vary some parameters of the model,
including

* The algorithm for the configurable equalizer
* The modulation scheme (symbol constellation)

* Channel coefficients

5-14

Adaptive Equalization

* The number of coefficients, or taps, in both equalizers
To access these parameters, double-click the Model Parameters block.
Cost Function and Initial Conditions

You can choose an initial set of weights for the equalizers when the Model Parameters
block has the Number of equalizer coefficients set to 2 and the Symbol
Constellation set to BPSK. To chose the initial set of weights, use this procedure:

1 Double-click the Plot Cost Function block to open a contour plot of the MSE cost
function (as well as the constant modulus cost function if you selected CMA as the
algorithm for the configurable equalizer).

2 Click in the plotting window to choose an initial set of weights for the equalizers in
the model. Your choice takes effect the next time you run the simulation.

Equalizer Mode

During the simulation, each of the equalizer types (other than CMA) is capable of
operating in training mode or decision-directed mode. In training mode, the desired
symbol sequence exactly matches the transmitted symbol sequence (i.e., the receiver has
knowledge of the transmitted data in this mode). In decision-directed mode, the "desired"
symbols are derived from the output of the decision device. You can toggle between
training and decision-directed mode by double-clicking the Switch block in the model.

Decision Directed

I pad

Training Mode

Results and Displays

Error Statistics

When you run the simulation, the display labeled BER Results Reference LMS shows
error statistics for the link with the reference equalizer, while the display labeled BER
Results shows error statistics for the link with the configurable equalizer. In particular,
each set of error statistics is a three-element vector containing the calculated bit error
rate (BER), the number of errors observed, and the number of bits processed.

5-15

5 Adaptive Equalizer Examples

You can reset the BER statistics during the simulation by double-clicking the Switch
block connected to the Rst port of the Error Rate Calculation blocks.

Scope Windows

During the simulation the model creates plots that show:

* A scatter plot of the received signal at the output of the channel.

Rx Signal ISR
File Toels View Simulation Help &

OPE | SE @ |-k
Received Signal

5-16

Adaptive Equalization

An MSE convergence plot where you can see that the equalizers' cost functions
converge to the minimum MSE.

- B
B MSE Convergency Plot E@g
File Teoels View Simulation Help o
©-OP @[|FH-
0.95 T T T T T T T T T T
02 : f
o E
3 015 :
& i
Z 0.1 :
0.05 :
0 L L i L i i L 1 i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (secs)
Ready Offset=0 | T=10.000
L8 A

The real part of the weights for the reference, configurable, and optimum equalizers.

5-17

5 Adaptive Equalizer Examples

i !
n doc_equalizationsim/Plot Results/Equalizer Taps - Real [= | =] éj
File View Axes Channels Window Help &

o &l
15
—+— Reference: LMS
—»—— Equalizer
— = — Optimum
1
=
m
il
&
@ 05
=
2
£
3
o
0
-0.5
0 0.2 0.4 0.6 0.8 1
Filter Coefficients
L y

* The imaginary part of the weights for the reference, configurable, and optimum
equalizers.

5-18

Adaptive Equalization

B doc_equalizationsim/Plot Results/Equalizer Taps - II. = | =] ﬁ,l
File View Axes Channels Window Help &
o &l

1
0.8 —+— Reference: LMS
: — ¥ — Equalizer
06 ——— Optimum
5 04
=)
m
£ 0.2
w 0% £
T
S -0.2
E
§ -0.4
0.6
-0.8
-1
0 0.2 0.4 0.6 0.8 1
Filter Coefficients

b o

The frequency responses of the channel, the channel after equalization (combined),
and the equalizer itself. You can see that the frequency response of the equalizer
is roughly the inverse of the channel response and that the post equalization or
combined response is flatter.

5-19

5 Adaptive Equalizer Examples

i ™y
H doc_equalizationsim/Plot Results/Equalizer Response @M

File View Axes Channels Window Help

@ e &l
25
Equalizer
= Channel
15 Combined
]
::IE 10
=
g
-10
-10 -5 0 8 10
Frequency (kHz)

e

+ A scatter plot of the signal equalized by the reference equalizer.

5-20

Adaptive Equalization

ORI

View Simulation Help

@ e Q-E-k
Reference Signal

r Reference | = | (=] |—-53-]1
File Tools N

A scatter plot of the signal equalized by the configurable equalizer.

5-21

5 Adaptive Equalizer Examples

5-22

Equalized | = | = |i‘3_]
File Toels View Simulation Help &

OPE | SE @ |-k
Equalized Signal

The cost functions for the equalizers, on the same axes with the minimum MSE.
When the Number of equalizer coefficients parameter in the Model Parameters
block is set to 2 and the Symbol Constellation parameter is set to BPSK, the model
produces an additional plot at the end of a simulation. The new plot shows the
trajectory of the two-element weight vector for each of the equalizers. On the same
set of axes is a contour plot of the MSE cost function (or the constant modulus cost
function, in case you selected CMA as the algorithm for the configurable equalizer).

Adaptive Equalization

You can see from the plot how the adaptive algorithm causes the weights to change so

as to minimize the cost function.

[Figure 1: MSE trajectory plot

File Edit View Insert Tools Desktop Window Help

N0Ee RATDEL 2|08 a0

MSE Cost Function for Reference Equaliz:

———r————

;{/;—_:-:_{777
7. o

(@

The simulation runs more slowly when it is updating all the plots. To close the plotting
windows and speed up the simulation, double-click the icon labeled Close Scopes.

To generate executable code, you will need to comment out the Plot Results subsystem,
as it does not support code generation. Use set_param(“doc_equalizersim/Plot
Results”,”Commented”, ”on”) to do this and generate code for the model.

Selected Bibliography

[1] Haykin, S., Adaptive Filter Theory, Third Edition, Upper Saddle River, NdJ, Prentice

Hall, 1996.

5-23

5 Adaptive Equalizer Examples

[2] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chicester,
England, Wiley, 1998.

[3] Johnson, C. R., et al., “Blind Equalization Using the Constant Modulus Criterion: A
Review”, Proc. IEEE, Vol. 86, No. 10, October 1998.

5-24

Equalize BSPK Signal

Equalize BSPK Signal

Equalize a BPSK signal using a linear equalizer with an least mean square (LMS)
algorithm.

Generate random binary data and apply BPSK modulation.

data = randi([0 1],1000,1);
modData = pskmod(data,?2?);

Apply two-tap static fading to the modulated signal.

rxSig = conv(modData,[0.5 0.05]);

Create an LMS adaptive algorithm object with a step size of 0.06.
alg = Ims(0.06);

Create a linear equalizer object having 8 taps using the previously created algorithm
object. Set the reference tap index to 4.

eqlms = lineareq(8,alqg);
eqlms_RefTap = 4;

Equalize the received signal, rxSig, while using the first 200 data bits as a training
sequence.

trSeq = data(1:200);
[eqgSig,~,e] = equalize(eqglms,rxSig,trSeq);

Filter and plot the power of the received (nonequalized) signal. The magnitude of the
signal has been attenuated by the channel.

rxSigPwr = filter(0.1*ones(10,1),1,abs(rxsSig))."2;
plot(rxSigPwr)

title("Received Signal™)

xlabel ("Bits")

ylabel ("Power (W)*")

5-25

5 Adaptive Equalizer Examples

Received Signal
0.3

|I IJ' ‘ I I
T

0.2 7

Fower (W)
=
&

01 7

0.057T 7

D i i i i i
0 200 400 G600 800 1000 1200

Bits

Plot the equalized signal. The signal reaches the intended power level of 1 W.

eqSigPwr = filter(0.1*ones(10,1),1,abs(eqgSig)).-"2;
plot(eqSigPwr)

title("Equalized Signal*®)

xlabel ("Bits")

ylabel ("Power (W)*™)

5-26

Equalize BSPK Signal

Equalized Signal

y
0.2t Ry FA'J‘IMI}
W

J

T

D i i
0 200 400

G00
Bits

800

1000

1200

Plot the magnitude of the error estimate, e. The error decreases until it is nearly zero

after 400 bits.

plot(abs(e))
title(C"Error Estimate®)
xlabel ("Bits")

ylabel ("Amplitude (V)*)

5-27

5 Adaptive Equalizer Examples

Error Estimate

1.2 T T

Amplitude (V)

G00 800 1000 1200
Bits

5-28

Compare RLS and LMS Algorithms

Compare RLS and LMS Algorithms

Equalize a QAM signal passed through a frequency-selective fading channel using RLS
and LMS algorithms. Compare the performance of the two algorithms.

Specify the modulation order. Generate the corresponding QAM reference constellation.

M = 16;
sigConst = gammod(0:M-1,M, "UnitAveragePower " ,true);

Create a frequency-selective static channel having three taps.

rchan = comm.RayleighChannel (*SampleRate®,1000,
"PathDelays”®,[0 le-3 2e-3], "AveragePathGains®,[0 -3 -6],
"MaximumDopplerShift*,0,
"RandomStream®, "mt19937ar with seed”, "Seed”,73);

RLS Equalizer

Create an RLS equalizer object.

eqrls = lineareq(6,rl1s(0.99,0.1));
eqrls._SigConst = sigConst;
eqrls_ResetBeforeFiltering = 0;

Generate and QAM modulate a random training sequence. Pass the sequence through
the Rayleigh fading channel. Pass the received signal and the training signal through the
equalizer to set the equalizer tap weights.

trainData = randi ([0 M-1],200,1);

trainSig = gammod(trainData,M, "UnitAveragePower” ,true);
rxSig = rchan(trainSig);

[~,~,errorSig] = equalize(eqrls,rxSig,trainSig);

Plot the magnitude of the error estimate.
plot(abs(errorsSig))
title(C"Error Estimate, RLS Equalizer™)

xlabel ("Symbols™)
ylabel ("Amplitude”)

5-29

5 Adaptive Equalizer Examples

Error Estimate, RLS Equalizer
14 T T T T T T T

1.2. 1I. :

=
o

Amplitude
[’
(=3}

)
0.2 \ l V LJL’I |I'||1 ‘wlﬂ

D i i i i i i i i i
0 20 40 60 80 100 120 140 160 180 200

Symbols

The error is nearly eliminated within 200 symbols.

Transmit a QAM signal through a frequency-selective channel. Equalize the received
signal using the previously 'trained' RLS equalizer. Measure the time required to execute
the processing loop.

tic

for k = 1:20

data = randi ([0 M-1],1000,1); % Random message
txSig = gammod(data,M, "UnitAveragePower” ,true);

% Introduce channel distortion.
rxSig = rchan(txSig);

5-30

Compare RLS and LMS Algorithms

% Equalize the received signal.
eqSig = equalize(eqrls,rxSig);

end
ristime = toc;

Plot the constellation diagram of the received and equalized signals.

h = scatterplot(rxSig,1,0,"c.");

hold on

scatterplot(eqgSig,1,0,"b.",h)
legend("Received Signal”, "Equalized Signal™)
title("RLS Equalizer®)

hold off
RLS Equalizer
T :ﬁ_ #ﬁ Received Signal | |
08t . . Equalized Signal | |
D6]
Sl o ® W

0.2r1

Quadrature
]

04t . <
06 1
08¢t .) 1
-1 0.5 0 05 1
In-Phase

5-31

5 Adaptive Equalizer Examples

The equalizer removed the effects of the fading channel.
LMS Equalizer
Repeat the equalization process with an LMS equalizer. Create an LMS equalizer object.

eqlms = lineareq(6,Ims(0.03));
eqlms._SigConst = sigConst;
eqlms_ResetBeforeFiltering = 0;

Train the LMS equalizer.

trainData = randi ([0 M-1],1000,1);

trainSig = gammod(trainData,M, "UnitAveragePower” ,true);
rxSig = rchan(trainSig);

[~,~,errorSig] = equalize(eqlms,rxSig,trainSig);

Plot the magnitude of the error estimate.
plot(abs(errorsSig))
title(C"Error Estimate, LMS Equalizer™)

xlabel ("Symbols™)
ylabel ("Amplitude”)

5-32

Compare RLS and LMS Algorithms

Error Estimate, LMS Equalizer

1.4

1.2

e
o

Amplitude
=
(=5}

0.2

0 200 400 GO0 800 1000
Symbols

Training the LMS equalizer requires 1000 symbols.

Transmit a QAM signal through the same frequency-selective channel. Equalize the
received signal using the previously 'trained' LMS equalizer. Measure the time required

to execute the processing loop.
tic
for k = 1:20

data = randi ([0 M-1],1000,1); % Random message
txSig = gammod(data,M, "UnitAveragePower” ,true);

% Introduce channel distortion.
rxSig = rchan(txSig);

5-33

5 Adaptive Equalizer Examples

% Equalize the received signal.
eqSig = equalize(eqlms,rxSig);

end
Imstime = toc;

Plot the constellation diagram of the received and equalized signals.

h = scatterplot(rxSig,1,0,"c.");

hold on

scatterplot(eqgSig,1,0,"b.",h)
legend("Received Signal”, "Equalized Signal®)
title(C"LMS Equalizer®)

LMS Equalizer

1f %_. ;* Received Signal } |

Equalized Signal
0.8 q a |

o W%, " R

Quadrature
[}

04t . o . |
06T 1
08t . e]
L & % &
-1 0.5 1] 0.5 1
In-Phase

The equalizer removes the effects of the fading channel.

5-34

Compare RLS and LMS Algorithms

Compare the loop execution time for the two equalizer algorithms.

[ristime Imstime]

ans =

4_4965 2.4798

The LMS algorithm is more computationally efficient as it took 50% of the time to
execute the processing loop. However, the training sequence required by the LMS
algorithm is 5 times longer.

5-35

System Design

* “Source Coding” on page 6-2

+ “Error Detection and Correction” on page 6-15

* “Interleaving” on page 6-153

+ “Digital Modulation” on page 6-171

* “Analog Passband Modulation” on page 6-201

+ “Phase-Locked Loops” on page 6-208

+ “Equalization” on page 6-212

* “Multiple-Input Multiple-Output (MIMO)” on page 6-247
* “Huffman Coding” on page 6-254

+ “Differential Pulse Code Modulation” on page 6-257
+ “Compand a Signal” on page 6-261

+ “Arithmetic Coding” on page 6-263

* “Quantization” on page 6-265

6 System Design

Source Coding

6-2

In this section...

“Represent Partitions” on page 6-2

“Represent Codebooks” on page 6-3

“Determine Which Interval Each Input Is In” on page 6-3
“Optimize Quantization Parameters” on page 6-4
“Differential Pulse Code Modulation” on page 6-5
“Optimize DPCM Parameters” on page 6-7

“Compand a Signal” on page 6-8

“Huffman Coding” on page 6-10

“Arithmetic Coding” on page 6-12

“Quantize a Signal” on page 6-13

Represent Partitions

Scalar quantization is a process that maps all inputs within a specified range to a
common value. This process maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two parameters
determine a quantization: a partition and a codebook.

A quantization partition defines several contiguous, nonoverlapping ranges of values
within the set of real numbers. To specify a partition in the MATLAB environment, list

the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the four sets

+ {xix<0}
+ x0<x<1}
c {x:1<x<3}
+ {x:3<x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

Source Coding

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks

A codebook tells the quantizer which common value to assign to inputs that fall into each
range of the partition. Represent a codebook as a vector whose length is the same as the
number of partition intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

1s one possible codebook for the partition [0,1,3].

Determine Which Interval Each Input Is In

The quantiz function also returns a vector that tells which interval each input is in. For
example, the output below says that the input entries lie within the intervals labeled 0,
6, and 5, respectively. Here, the Oth interval consists of real numbers less than or equal
to 3; the 6th interval consists of real numbers greater than 8 but less than or equal to 9;
and the 5th interval consists of real numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];
index = quantiz([2 9 8],partition)

The output is

index =

0

6

5
If you continue this example by defining a codebook vector such as
codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase
the example more concisely as below.

6-3

6 System Design

partition = [3,4,5,6,7,8,9];
codebook = [3,3,4,5,6,7,8,9];
[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters

+ “Section Overview” on page 6-4

+ “Example: Optimizing Quantization Parameters” on page 6-4
Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate
partition and codebook parameters. However, testing and selecting parameters for
large signal sets with a fine quantization scheme can be tedious. One way to produce
partition and codebook parameters easily is to optimize them according to a set of so-
called training data.

Note: The training data you use should be typical of the kinds of signals you will actually
be quantizing.

Example: Optimizing Quantization Parameters

The 1loyds function optimizes the partition and codebook according to the Lloyd
algorithm. The code below optimizes the partition and codebook for one period of a
sinusoidal signal, starting from a rough initial guess. Then it uses these parameters to
quantize the original signal using the initial guess parameters as well as the optimized
parameters. The output shows that the mean square distortion after quantizing is much
less for the optimized parameters. The quantiz function automatically computes the
mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."
t = [0:.1:2*pi];

sig = sin(t);

partition = [-1:.2:1];

codebook = [-1.2:.2:1];

% Now optimize, using codebook as an initial guess.
[partition2,codebook2] = lloyds(sig,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);
[index2,quant2,distor2] = quantiz(sig,partition2,codebook?);

% Compare mean square distortions from initial and optimized

Source Coding

[distor, distor2] % parameters.

The output is
ans =

0.0148 0.0024

Differential Pulse Code Modulation

+ “Section Overview” on page 6-5
+ “DPCM Terminology” on page 6-5
+ “Represent Predictors” on page 6-6

+ “Example: DPCM Encoding and Decoding” on page 6-6
Section Overview

The quantization in the section “Quantize a Signal” on page 6-13 requires no a

priori knowledge about the transmitted signal. In practice, you can often make educated
guesses about the present signal based on past signal transmissions. Using such
educated guesses to help quantize a signal is known as predictive quantization. The most
common predictive quantization method is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM
predictive quantizer with a linear predictor.

DPCM Terminology

To determine an encoder for such a quantizer, you must supply not only a partition
and codebook as described in “Represent Partitions” on page 6-2 and “Represent
Codebooks” on page 6-3, but also a predictor. The predictor is a function that the
DPCM encoder uses to produce the educated guess at each step. A linear predictor has
the form

y(k) = p(Dx(k-1) + p(@2)x(k-2) + ... + p(m-D)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y (k) attempts to predict the value of x(k), and p is an m-
tuple of real numbers. Instead of quantizing X itself, the DPCM encoder quantizes the
predictive error, x-y. The integer m above is called the predictive order. The special case
when m = 1 is called delta modulation.

6-5

6 System Design

6-6

Represent Predictors

If the guess for the kth value of the signal X, based on earlier values of X, is
y(k) = p(Dx(k-1) + p(2x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)
then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),---, p(m-1), p(m]

Note: The initial zero in the predictor vector makes sense if you view the vector as the
polynomial transfer function of a finite impulse response (FIR) filter.

Example: DPCM Encoding and Decoding

A simple special case of DPCM quantizes the difference between the signal's current
value and its value at the previous step. Thus the predictor is just y(k) = x (k - 1).
The code below implements this scheme. It encodes a sawtooth signal, decodes it, and
plots both the original and decoded signals. The solid line is the original signal, while the
dashed line is the recovered signals. The example also computes the mean square error
between the original and decoded signals.

predictor [0 17; % y(k)=x(k-1)

partition [-1:.1:.9];

codebook = [-1:.1:1];

t = [0:pi/50:2*pi];

X = sawtooth(3*t); % Original signal

% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);
plot(t,x,t,decodedx, "--")

legend("Original signal®, "Decoded signal”,"Location”, "NorthOutside®);
distor = sum((x-decodedx) .”2)/length(x) % Mean square error

The output is
distor =

0.0327

Source Coding

Figure1 e =]

File Edit View Insert Tools Desktop Window Help L]

NEHde | b ARUDEL- Q| 0B ad

Optimize DPCM Parameters

+ “Section Overview” on page 6-7

+ “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page
6-8

Section Overview

The section “Optimize Quantization Parameters” on page 6-4 describes how to use
training data with the 1loyds function to help find quantization parameters that will
minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction
with the two functions dpcmenco and dpcmdeco, which first appear in the previous
section.

Note: The training data you use with dpcmopt should be typical of the kinds of signals
you will actually be quantizing with dpcmenco.

6 System Design

Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example
created predictor, partition, and codebook in a straightforward but haphazard
way, this example uses the same codebook (now called initcodebook) as an initial
guess for a new optimized codebook parameter. This example also uses the predictive
order, 1, as the desired order of the new optimized predictor. The dpcmopt function
creates these optimized parameters, using the sawtooth signal X as training data. The
example goes on to quantize the training data itself; in theory, the optimized parameters
are suitable for quantizing other data that is similar to X. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t [O:pi/50:2*pi];

X = sawtooth(3*t); % Original signal

initcodebook = [-1:.1:1]; % Initial guess at codebook

% Optimize parameters, using initial codebook and order 1.
[predictor,codebook, partition] = dpcmopt(x,1, initcodebook);
% Quantize X using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);

distor = sum((x-decodedx).”2)/length(x) % Mean square error

The output is

distor =

0.0063

Compand a Signal

+ “Section Overview” on page 6-8

+ “Example: p-Law Compander” on page 6-9
Section Overview

In certain applications, such as speech processing, it is common to use a logarithm
computation, called a compressor, before quantizing. The inverse operation of a
compressor is called an expander. The combination of a compressor and expander is
called a compander.

The compand function supports two kinds of companders: p-law and A-law companders.
Its reference page lists both compressor laws.

Source Coding

Example: p-Law Compander

The code below quantizes an exponential signal in two ways and compares the resulting
mean square distortions. First, it uses the quantiz function with a partition consisting
of length-one intervals. In the second trial, compand implements a p-law compressor,
quantiz quantizes the compressed data, and compand expands the quantized data. The
output shows that the distortion is smaller for the second scheme. This is because equal-
length intervals are well suited to the logarithm of sig, but not well suited to sig. The
figure shows how the compander changes sig.

Mu = 255; % Parameter for mu-law compander

ig = -4:.1:4;

= exp(sig); % Exponential signal to quantize

V = max(sig);

% 1. Quantize using equal-length intervals and no compander.
[index,quants,distor] = quantiz(sig,0:Ffloor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress

% before quantizing and expand afterwards.

compsig = compand(sig,Mu,V, "mu/compressor®);
[index,quants] = quantiz(compsig,0:Ffloor(V),0:ceil(V));
newsig = compand(quants,Mu,max(quants), "mu/expander™);
distor2 = sum((newsig-sig)-"2)/length(sig);

[distor, distor2] % Display both mean square distortions.

plot(sig); % Plot original signal.

hold on;

plot(compsig, "r--"); % Plot companded signal.
legend("Original ", "Companded” , "Location”, "NorthWest")
The output and figure are below.

ans =

0.5348 0.0397

6 System Design

6-10

B Figure1 (=[O sl
File Edit View Insert Tools Desktop Window Help L]
j_jaé h +\-_\-{fr?@\+h£v @J |:| EE
60 T T
Original
— — Companded
50 B
40 B
30r B
20 B
10F B
~
P
-
— —
0 — L L
0 10 20 90
Huffman Coding

+ “Section Overview” on page 6-10
+ “Create a Huffman Code Dictionary in MATLAB” on page 6-11
+ “Create and Decode a Huffman Code Using MATLAB” on page 6-12

Section Overview

Huffman coding offers a way to compress data. The average length of a Huffman code
depends on the statistical frequency with which the source produces each symbol from
its alphabet. A Huffman code dictionary, which associates each data symbol with a
codeword, has the property that no codeword in the dictionary is a prefix of any other
codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support Huffman coding
and decoding.

Source Coding

Note: For long sequences from sources having skewed distributions and small alphabets,
arithmetic coding compresses better than Huffman coding. To learn how to use
arithmetic coding, see “Arithmetic Coding” on page 6-12.

Create a Huffman Code Dictionary in MATLAB

Huffman coding requires statistical information about the source of the data being
encoded. In particular, the p input argument in the huffmandict function lists the
probability with which the source produces each symbol in its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s with
probability 0.1, and 3s with probability 0.8. The main computational step in encoding
data from this source using a Huffman code is to create a dictionary that associates each
data symbol with a codeword. The commands below create such a dictionary and then
show the codeword vector associated with a particular value from the data source.

symbols = [1 2 3]; % Data symbols

p =[0.10.10.8]; % Probability of each data symbol
dict = huffmandict(symbols,p) % Create the dictionary.
dict{l,:} % Show one row of the dictionary.

The output below shows that the most probable data symbol, 3, is associated with a one-
digit codeword, while less probable data symbols are associated with two-digit codewords.
The output also shows, for example, that a Huffman encoder receiving the data symbol 1
should substitute the sequence 11.

dict =

1] [1x2 double]
21 [1x2 double]

31 L 0]
ans =
1
ans =
1 1

6-11

6 System Design

6-12

Create and Decode a Huffman Code Using MATLAB

The example below performs Huffman encoding and decoding, using a source whose
alphabet has three symbols. Notice that the hufFfmanenco and huffmandeco functions
use the dictionary that huffmandict created.

sig = repmat([3 31333332 3],1,50); % Data to encode
symbols = [1 2 3]; % Distinct data symbols appearing in sig
p =[0.10.10.8]; % Probability of each data symbol

dict = huffmandict(symbols,p); % Create the dictionary.

hcode = huffmanenco(sig,dict); % Encode the data.
dhsig = huffmandeco(hcode,dict); % Decode the code.
Arithmetic Coding

+ “Section Overview” on page 6-12
* “Represent Arithmetic Coding Parameters” on page 6-12
+ “Create and Decode an Arithmetic Code Using MATLAB” on page 6-13

Section Overview

Arithmetic coding offers a way to compress data and can be useful for data sources
having a small alphabet. The length of an arithmetic code, instead of being fixed relative
to the number of symbols being encoded, depends on the statistical frequency with which
the source produces each symbol from its alphabet. For long sequences from sources
having skewed distributions and small alphabets, arithmetic coding compresses better
than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and decoding.
Represent Arithmetic Coding Parameters

Arithmetic coding requires statistical information about the source of the data being
encoded. In particular, the counts input argument in the arithenco and arithdeco
functions lists the frequency with which the source produces each symbol in its alphabet.
You can determine the frequencies by studying a set of test data from the source. The set
of test data can have any size you choose, as long as each symbol in the alphabet has a
nonzero frequency.

For example, before encoding data from a source that produces 10 x's, 10 y's, and 80 z's in
a typical 100-symbol set of test data, define

Source Coding

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x's, 23 y's, and 185
z's, then define

counts = [22 23 185];
Create and Decode an Arithmetic Code Using MATLAB

The example below performs arithmetic encoding and decoding, using a source whose
alphabet has three symbols.

seq = repmat([3 31333332 3],1,50);
counts = [10 10 80];

code = arithenco(seq,counts);

dseq = arithdeco(code,counts, length(seq));

Quantize a Signal

+ “Scalar Quantization Example 1” on page 6-13

* “Scalar Quantization Example 2” on page 6-14
Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map
a real vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];
codebook = [-1, 0.5, 2, 3];
samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];
[index,quantized] = quantiz(samp,partition,codebook);
quantized
The output is below.
quantized =
Columns 1 through 6
-1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000
Columns 7 through 12

2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

6-13

6 System Design

Column 13
3.0000
Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing
a sampled sine wave, it plots the original and quantized signals. The plot contrasts the
X's that make up the sine curve with the dots that make up the quantized signal. The
vertical coordinate of each dot is a value in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function
sig = sin(t); % Original signal, a sine wave

partition = [-1:.2:1]; % Length 11, to represent 12 intervals
codebook = [-1.2:.2:1]; % Length 12, one entry for each interval
[index,quants] = quantiz(sig,partition,codebook); % Quantize.
plot(t,sig, "x",t,quants,".")

legend("Original signal”, "Quantized signal”);

axis([--2 7 -1.2 1.2])

u Figurel EI@

File Edit View Insert Tools Desktop Window Help L]

NEHL|MNIRWOUDEL- 2| 0B D

% Qriginal signal
+ Quantized signal

" £
08F B -
w 3

1+ M,
3 .
s oy

k3
06} Fee Eess -

ND6F e e -
* S
S
08} ey . 2o B
ES s
£ W
Ak R T2 L T ~

0 1 2 3 4 5 6 7

6-14

Error Detection and Correction

Error Detection and Correction

In this section...

“Cyclic Redundancy Check Codes” on page 6-15
“Block Codes” on page 6-19

“Convolutional Codes” on page 6-37

“Linear Block Codes” on page 6-69

“Hamming Codes” on page 6-79

“BCH Codes” on page 6-88

“Reed-Solomon Codes” on page 6-95

“LDPC Codes” on page 6-106

“Galois Field Computations” on page 6-106

“Galois Fields of Odd Characteristic” on page 6-137

Cyclic Redundancy Check Codes

+ “CRC-Code Features” on page 6-15

* “CRC Non-Direct Algorithm” on page 6-16

+ “Example Using CRC Non-Direct Algorithm” on page 6-18
+ “CRC Direct Algorithm” on page 6-18

+ “Selected Bibliography for CRC Coding” on page 6-19

CRC-Code Features

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting
errors that occur when a message is transmitted. Unlike block or convolutional

codes, CRC codes do not have a built-in error-correction capability. Instead, when

a communications system detects an error in a received message word, the receiver
requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create extra bits,
called the checksum, or syndrome, and then appends the checksum to the message word.
After receiving a transmitted word, the receiver applies the same rule to the received
word. If the resulting checksum is nonzero, an error has occurred, and the transmitter
should resend the message word.

6-15

6 System Design

Open the Error Detection and Correction library by double-clicking its icon in the main
Communications System Toolbox block library. Open the CRC sublibrary by double-
clicking on its icon in the Error Detection and Correction library.

Communications System Toolbox supports CRC Coding using Simulink blocks, System
objects, or MATLAB objects.

Blocks
The CRC block library contains four blocks that implement the CRC algorithm:

* General CRC Generator

* General CRC Syndrome Detector

* CRC-N Generator

+ CRC-N Syndrome Detector

The General CRC Generator block computes a checksum for each input frame, appends
it to the message word, and transmits the result. The General CRC Syndrome Detector
block receives a transmitted word and calculates its checksum. The block has two
outputs. The first is the message word without the transmitted checksum. The second

output is a binary error flag, which is 0 if the checksum computed for the received word is
zero, and 1 otherwise.

The CRC-N Generator block and CRC-N Syndrome Detector block are special cases of the
General CRC Generator block and General CRC Syndrome Detector block, which use a
predefined CRC-N polynomial, where N is the number of bits in the checksum.

See the General CRC Generator block Reference page for an example of Cyclic
Redundancy Check Encoding.

System objects
The following System objects implement the CRC algorithm:

+ comm.CRCDetector

+ comm.CRCGenerator
These reference pages contain examples demonstrating the use of the object.
CRC Non-Direct Algorithm

The CRC non-direct algorithm accepts a binary data vector, corresponding to a
polynomial M, and appends a checksum of r bits, corresponding to a polynomial C. The

6-16

Error Detection and Correction

concatenation of the input vector and the checksum then corresponds to the polynomial
T = M*x" + C, since multiplying by x* corresponds to shifting the input vector r bits to
the left. The algorithm chooses the checksum C so that T is divisible by a predefined
polynomial P of degree r, called the generator polynomial.

The algorithm divides 7 by P, and sets the checksum equal to the binary vector
corresponding to the remainder. That is, if 7= @*P + R, where R is a polynomial of
degree less than r, the checksum is the binary vector corresponding to R. If necessary,
the algorithm prepends zeros to the checksum so that it has length r.

The CRC generation feature, which implements the transmission phase of the CRC
algorithm, does the following:

1 Left shifts the input data vector by r bits and divides the corresponding polynomial
by P.

2 Sets the checksum equal to the binary vector of length r, corresponding to the
remainder from step 1.

3 Appends the checksum to the input data vector. The result is the output vector.

The CRC detection feature computes the checksum for its entire input vector, as
described above.

The CRC algorithm uses binary vectors to represent binary polynomials, in descending

order of powers. For example, the vector [1 1 O 1] represents the polynomial x° + x* +
1.

Note The implementation described in this section is one of many valid implementations
of the CRC algorithm. Different implementations can yield different numerical results.

&1 2 2

¥ hd Y

I ,_@.,ﬁd <—@<7d« “@‘m

6-17

6 System Design

6-18

Bits enter the linear feedback shift register (LFSR) from the lowest index bit to the
highest index bit. The sequence of input message bits represents the coefficients of a
message polynomial in order of decreasing powers. The message vector is augmented
with r zeros to flush out the LFSR, where r is the degree of the generator polynomial. If
the output from the leftmost register stage d(1) is a 1, then the bits in the shift register
are XORed with the coefficients of the generator polynomial. When the augmented
message sequence 1s completely sent through the LFSR, the register contains the
checksum [d(1) d(2) ... d(r)]. This is an implementation of binary long division, in which
the message sequence is the divisor (numerator) and the polynomial is the dividend
(denominator). The CRC checksum is the remainder of the division operation.

Example Using CRC Non-Direct Algorithm

Suppose the input frameis [1 1 0 0 1 1 0]", corresponding to the polynomial M
=% +x °+ x”+ x, and the generator polynomial is P = x® + x* + 1, of degree r = 3. By
polynomial division, M*x® = (x® + x* + x)*P + x. The remainder is R = x, so that the
checksum is then [0 1 0]". An extra 0 is added on the left to make the checksum have
length 3.

CRC Direct Algorithm

¢ ¢ X /,/Y
Q)) S

Message Block Input

8 (o]
N, X X AY
\OY ,’/

Code Word Output -«——

where

Error Detection and Correction

Message Block Input is mg,my,...,mp_1

C0sC15eees Cpp1 = mO,ml,...,mk_l,do,dl,...,dn_k_l
Code Word Output is X Y

The initial step of the direct CRC encoding occurs with the three switches in position X.
The algorithm feeds & message bits to the encoder. These bits are the first k bits of the
code word output. Simultaneously, the algorithm sends % bits to the linear feedback shift
register (LFSR). When the system completely feeds the kth message bit to the LFSR,

the switches move to position Y. Here, the LFSR contains the mathematical remainder
from the polynomial division. These bits are shifted out of the LFSR and they are the
remaining bits (checksum) of the code word output.

Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, Nd, Prentice Hall, 1995.

Block Codes

“Block-Coding Features” on page 6-20

* “Terminology” on page 6-21

* “Data Formats for Block Coding” on page 6-21

+ “Using Block Encoders and Decoders Within a Model” on page 6-24
+ “Examples of Block Coding” on page 6-24

+ “Notes on Specific Block-Coding Techniques” on page 6-27

+ “Shortening, Puncturing, and Erasures” on page 6-31

+ “Reed-Solomon Code in Integer Format” on page 6-34

+ “Find a Generator Polynomial” on page 6-34

+ “Performing Other Block Code Tasks” on page 6-35

+ “Selected Bibliography for Block Coding” on page 6-36

6-19

6 System Design

6-20

Block-Coding Features

Error-control coding techniques detect, and possibly correct, errors that occur when
messages are transmitted in a digital communication system. To accomplish this, the
encoder transmits not only the information symbols but also extra redundant symbols.
The decoder interprets what it receives, using the redundant symbols to detect and
possibly correct whatever errors occurred during transmission. You might use error-
control coding if your transmission channel is very noisy or if your data is very sensitive
to noise. Depending on the nature of the data or noise, you might choose a specific type of
error-control coding.

Block coding is a special case of error-control coding. Block-coding techniques map a
fixed number of message symbols to a fixed number of code symbols. A block coder treats
each block of data independently and is a memoryless device. Communications System
Toolbox contains block-coding capabilities by providing Simulink blocks, System objects,
and MATLAB functions.

The class of block-coding techniques includes categories shown in the diagram below.

Linear block codes

Cyclic codes

BCH codes

/N

Homming Codes Reed-Solomon Codes

Communications System Toolbox supports general linear block codes. It also process
cyclic, BCH, Hamming, and Reed-Solomon codes (which are all special kinds of linear
block codes). Blocks in the product can encode or decode a message using one of the
previously mentioned techniques. The Reed-Solomon and BCH decoders indicate how
many errors they detected while decoding. The Reed-Solomon coding blocks also let you
decide whether to use symbols or bits as your data.

Note The blocks and functions in this product are designed for error-control codes that

use an alphabet having 2 or 2™ symbols.

Error Detection and Correction

Communications System Toolbox Support Functions
Functions in Communications System Toolbox can support simulation blocks by
* Determining characteristics of a technique, such as error-correction capability or

possible message lengths

* Performing lower-level computations associated with a technique, such as

Computing a truth table
Computing a generator or parity-check matrix
+ Converting between generator and parity-check matrices

+ Computing a generator polynomial

For more information about error-control coding capabilities, see “Block Codes” on page
6-19 in the Communications System Toolbox User's Guide.

Terminology

Throughout this section, the information to be encoded consists of message symbols and
the code that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of N message
symbols. K is called the message length, NV is called the codeword length, and the code is
called an [N,K] code.

Data Formats for Block Coding

Each message or codeword is an ordered grouping of symbols. Each block in the Block
Coding sublibrary processes one word in each time step, as described in the following
section, “Binary Format (All Coding Methods)” on page 6-21. Reed-Solomon coding
blocks also let you choose between binary and integer data, as described in “Integer
Format (Reed-Solomon Only)” on page 6-23.

Binary Format (All Coding Methods)

You can structure messages and codewords as binary vector signals, where each vector
represents a message word or a codeword. At a given time, the encoder receives an
entire message word, encodes it, and outputs the entire codeword. The message and code
signals share the same sample time.

The figure below illustrates this situation. In this example, the encoder receives a four-
bit message and produces a five-bit codeword at time 0. It repeats this process with a new
message at time 1.

6-21

6 System Design

6-22

0 1
0 0
] 1 ! o
—1. 1 T, Encoder 1 | —=
1 0
0 0
0] 0
=1 1=0
=1 1=0

For all coding techniques except Reed-Solomon using binary input, the message vector
must have length K and the corresponding code vector has length N. For Reed-Solomon
codes with binary input, the symbols for the code are binary sequences of length M,

corresponding to elements of the Galois field GF(2Y). In this case, the message vector
must have length M*K and the corresponding code vector has length M*N. The Binary-
Input RS Encoder block and the Binary-Output RS Decoder block use this format for
messages and codewords.

If the input to a block-coding block is a frame-based vector, it must be a column vector
instead of a row vector.

To produce sample-based messages in the binary format, you can configure the Bernoulli
Binary Generator block so that its Probability of a zero parameter is a vector whose
length is that of the signal you want to create. To produce frame-based messages in

the binary format, you can configure the same block so that its Probability of a zero
parameter is a scalar and its Samples per frame parameter is the length of the signal
you want to create.

Using Serial Signals

If you prefer to structure messages and codewords as scalar signals, where several
samples jointly form a message word or codeword, you can use the Buffer and Unbuffer
blocks in DSP System Toolbox. Be aware that buffering involves latency and multirate
processing. See the reference page for the Buffer block for more details. If your model
computes error rates, the initial delay in the coding-buffering combination influences

the Receive delay parameter in the Error Rate Calculation block. If you are unsure
about the sample times of signals in your model, click the Display menu and select
Sample Time > Colors. Alternatively, attaching Probe blocks (from the Simulink Signal
Attributes library) to connector lines might help.

Error Detection and Correction

Integer Format (Reed-Solomon Only)

A message word for an [N,K] Reed-Solomon code consists of M*K bits, which you can

interpret as K symbols between 0 and 2™. The symbols are binary sequences of length

M, corresponding to elements of the Galois field GF(2Y), in descending order of powers.
The integer format for Reed-Solomon codes lets you structure messages and codewords
as integer signals instead of binary signals. (The input must be a frame-based column

vector.)

Note In this context, Simulink expects the first bit to be the most significant bit in the
symbol. “First” means the smallest index in a vector or the smallest time for a series of

scalars.

The following figure illustrates the equivalence between binary and integer signals for a
Reed-Solomon encoder. The case for the decoder is similar.

I:O '=0
-0- / -3-
1 1
1 1
: — |—
Vector of 5
1 3-bit symbols L1
1
0
0
1
0 >
0
Vector of
01 3x5bis
0
0
1]

B=——=H

RS encoder

Integer format
versus
Binary format

B=——=H

Binary Input
RS encoder

N\

6-23

6 System Design

To produce sample-based messages in the integer format, you can configure the Random
Integer Generator block so that M-ary number and Initial seed parameters are vectors

of the desired length and all entries of the M-ary number vector are 2™. To produce
frame-based messages in the integer format, you can configure the same block so that its
M-ary number and Initial seed parameters are scalars and its Samples per frame
parameter is the length of the signal you want to create.

Using Block Encoders and Decoders Within a Model

Once you have configured the coding blocks, a few tips can help you place them correctly
within your model:

+ If a block has multiple outputs, the first one is always the stream of coding data.

The Reed-Solomon and BCH blocks have an error counter as a second output.

* Be sure the signal sizes are appropriate for the mask parameters. For example, if you
use the Binary Cyclic Encoder block and set Message length K to 4, the input signal
must be a vector of length 4.

If you are unsure about the size of signals in your model, clicking the Display menu
select Signals and Ports >Signal Dimension.

Examples of Block Coding

Example: Reed-Solomon Code in Integer Format

This example uses a Reed-Solomon code in integer format. It illustrates the appropriate
vector lengths of the code and message signals for the coding blocks. It also exhibits error
correction, using a very simple way of introducing errors into each codeword.

o |,

Loerrr
Unbuffer Scope

r= . ™ B==H B=-8
Random - —b@—}
Integer RS Encoder RS Decodeg,
Gai
Random-Integer Integer-lnput &in Integer-Output » l:l
Generator RS Encoder RS Decoder Lo

Unbuffer1 ~ Scopel

Open the model by typing doc_rscoding at the MATLAB command line. To build the
model, gather and configure these blocks:

6-24

Error Detection and Correction

* Random Integer Generator, in the Comm Sources library

Set M-ary number to 15.
+ Set Initial seed to a positive number, randseed(0) is chosen here.
* Check the Frame-based outputs check box.
+ Set Samples per frame to 5.

* Integer-Input RS Encoder

+ Set Codeword length N to 15.
Set Message length K to 5.
* Gain, in the Simulink Math Operations library

Set Gain to [0; 0; 0O; 0; O; ones(10,1)].
* Integer-Output RS Decoder

Set Codeword length N to 15.
+ Set Message length K to 5.
* Scope, in the Simulink Sinks library. Get two copies of this block.
* Sum, in the Simulink Math Operations library

+ Set List of signs to |-+

Connect the blocks as in the preceding figure. From the model window's Simulation
menu, select Model Configuration Parameters. In the Configuration Parameters
dialog box, set Stop Time to 500.

The vector length numbers appear on the connecting lines only if you click the Display
menu and select Signals & Ports > Signal Dimensions. The encoder accepts a vector
of length 5 (which is K in this case) and produces a vector of length 15 (which is N in this
case). The decoder does the opposite.

Running the model produces the following scope images. Your plot of the error counts
might differ somewhat, depending on your Initial Seed value in the Random Integer
Generator block. (To make the axis range exactly match that of the first scope, right-click
the plot area in the scope and select Axes Properties.)

6-25

6 System Design

r—nSI::tzl-;:ns_' [:'Eléjﬁ
G0 [Rw i ONB DaR -

-] 100 200 300 00 500

Time offzet. 0

6-26

Error Detection and Correction

r—nSI::tzl-;:nal Elﬂléy
20w d DR D0aF -

] 100 200 300 400 a00

Time offzet. 0

L

Number of Errors Before Correction

The second plot is the number of errors that the decoder detected while trying to recover
the message. Often the number is five because the Gain block replaces the first five
symbols in each codeword with zeros. However, the number of errors is less than five
whenever a correct codeword contains one or more zeros in the first five places.

The first plot is the difference between the original message and the recovered message;
since the decoder was able to correct all errors that occurred, each of the five data
streams in the plot is zero.

Notes on Specific Block-Coding Techniques

Although the Block Coding sublibrary is somewhat uniform in its look and feel, the
various coding techniques are not identical. This section describes special options and
restrictions that apply to parameters and signals for the coding technique categories
in this sublibrary. Read the part that applies to the coding technique you want to use:
generic linear block code, cyclic code, Hamming code, BCH code, or Reed-Solomon code.

6-27

6 System Design

6-28

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix.
Decoding the code requires the generator matrix and possibly a truth table. In order to
use the Binary Linear Encoder and Binary Linear Decoder blocks, you must understand
the Generator matrix and Error-correction truth table parameters.

Generator Matrix

The process of encoding a message into an [N,K] linear block code is determined by a K-
by-N generator matrix G. Specifically, a 1-by-K message vector v is encoded into the 1-
by-N codeword vector vG. If G has the form [I, P] or [P, I], where P is some K-by-(N-
K) matrix and Iy is the K-by-K identity matrix, G is said to be in standard form. (Some
authors, such as Clark and Cain [2], use the first standard form, while others, such

as Lin and Costello [3], use the second.) The linear block-coding blocks in this product
require the Generator matrix mask parameter to be in standard form.

Decoding Table

A decoding table tells a decoder how to correct errors that might have corrupted the

code during transmission. Hamming codes can correct any single-symbol error in any
codeword. Other codes can correct, or partially correct, errors that corrupt more than one
symbol in a given codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the Error-
correction truth table parameter. Represent a decoding table as a matrix with N

columns and 2V rows. Each row gives a correction vector for one received codeword
vector.

If you do not want to specify a decoding table explicitly, set that parameter to O.
This causes the block to compute a decoding table using the syndtable function in
Communications System Toolbox.

Cyclic Codes

For cyclic codes, the codeword length N must have the form 2™-1, where M is an integer
greater than or equal to 3.

Generator Polynomials

Cyclic codes have special algebraic properties that allow a polynomial to determine the
coding process completely. This so-called generator polynomial is a degree-(N-K) divisor

Error Detection and Correction

of the polynomial x~-1. Van Lint [5] explains how a generator polynomial determines a
cyclic code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to specify a
generator polynomial as the second mask parameter, instead of specifying K there.
The blocks represent a generator polynomial using a vector that lists the polynomial's
coefficients in order of ascending powers of the variable. You can find generator
polynomials for cyclic codes using the cyclpoly function in Communications System
Toolbox.

If you do not want to specify a generator polynomial, set the second mask parameter to
the value of K.

Hamming Codes

For Hamming codes, the codeword length N must have the form 2M-1, where M is an
integer greater than or equal to 3. The message length K must equal N-M.

Primitive Polynomials

Hamming codes rely on algebraic fields that have 2¥ elements (or, more generally,

p™ elements for a prime number p). Elements of such fields are named relative to

a distinguished element of the field that is called a primitive element. The minimal
polynomial of a primitive element is called a primitive polynomial. The Hamming
Encoder and Hamming Decoder blocks allow you to specify a primitive polynomial for the
finite field that they use for computations. If you want to specify this polynomial, do so

in the second mask parameter field. The blocks represent a primitive polynomial using a
vector that lists the polynomial's coefficients in order of ascending powers of the variable.
You can find generator polynomials for Galois fields using the gFprimfd function in
Communications System Toolbox.

If you do not want to specify a primitive polynomial, set the second mask parameter to
the value of K.

BCH Codes

BCH codes are cyclic error-correcting codes that are constructed using finite fields. For

these codes, the codeword length N must have the form 2M-1, where M is an integer
between 3 and 9. The message length K is restricted to particular values that depend on
N. To see which values of K are valid for a given N, see the comm.BCHEncoder System
object™ reference page. No known analytic formula describes the relationship among the
codeword length, message length, and error-correction capability for BCH codes.

6-29

6 System Design

6-30

Narrow-Sense BCH Codes
The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ..., m_2t(x)], where:

+ LCM represents the least common multiple,

m_i(x) represents the minimum polynomial corresponding to o, a is a root of the
default primitive polynomial for the field GF(n+1),

+ and t represents the error-correcting capability of the code.
Reed-Solomon Codes

Reed-Solomon codes are useful for correcting errors that occur in bursts. In the simplest
case, the length of codewords in a Reed-Solomon code is of the form N= 2.1, where

the 2Mis the number of symbols for the code. The error-correction capability of a Reed-
Solomon code is Floor ((N-K)/2), where K is the length of message words. The
difference N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N is less
than 2M-1. In this case, the encoder appends 2M-1-N zero symbols to each message word
and codeword. The error-correction capability of a shortened Reed-Solomon code is also
floor ((N-K)/2). The Communications System Toolbox Reed-Solomon blocks can
implement shortened Reed-Solomon codes.

Effect of Nonbinary Symbols

One difference between Reed-Solomon codes and the other codes supported in this
product is that Reed-Solomon codes process symbols in GF(2Y) instead of GF(2). Each
such symbol is specified by M bits. The nonbinary nature of the Reed-Solomon code
symbols causes the Reed-Solomon blocks to differ from other coding blocks in these ways:

* You can use the integer format, via the Integer-Input RS Encoder and Integer-Output
RS Decoder blocks.

* The binary format expects the vector lengths to be an integer multiple of M*K (not K)
for messages and the same integer M*N (not N) for codewords.

Error Information

The Reed-Solomon decoding blocks (Binary-Output RS Decoder and Integer-Output RS
Decoder) return error-related information during the simulation. The second output
signal indicates the number of errors that the block detected in the input codeword. A -1
in the second output indicates that the block detected more errors than it could correct
using the coding scheme.

Error Detection and Correction

Shortening, Puncturing, and Erasures

Many standards utilize punctured codes, and digital receivers can easily output erasures.
BCH and RS performance improves significantly in fading channels where the receiver
generates erasures.

A punctured codeword has only parity symbols removed, and a shortened codeword has
only information symbols removed. A codeword with erasures can have those erasures in
either information symbols or parity symbols.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening,
puncturing, and erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing.

The following figure shows a representative example of a (7,3) Reed Solomon encoder

with shortening and puncturing.

RS Encoder with Shortening and Puncturing

; > » Encode
source ' 2-symbol Zeros 3-symbol (7,3)
\ shortened message
! message
- . - Shorten |-
(5,2) (1011) 6,2

In this figure, the message source outputs two information symbols, designated by
I1I5. (For a BCH example, the symbols are simply binary bits.) Because the code is a

shortened (7,3) code, a zero must be added ahead of the information symbols, yielding

6-31

6 System Design

a three-symbol message of 0I;1,. The modified message sequence is then RS encoded,
and the added information zero is subsequently removed, which yields a result of
L I,P,PyPsP,. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011.
Within the puncture vector, a 1 means that the symbol is kept, and a 0 means that the
symbol is thrown away. In this example, the puncturing operation removes the second
parity symbol, yielding a final vector of I;1,P,P3P,.

Decoder Example with Shortening and Puncturing.

The following figure shows how the RS decoder operates on a shortened and punctured

codeword.

RS Decoder with Shortening and Puncturing !

i 1i12P1P3Py _ | Depuncture l112P1EP3P, | Add 5

Demod . > > —

E (5,2) (1011) (6,2) Zeros '

| 11, DI4l, 0l,1,P4EP5P, |

- : Truncate = Decode |- ;

1 2-symbol 3-symbol (7,3) '

i shortened message :

! message .

This case corresponds to the encoder operations shown in the figure of the RS encoder
with shortening and puncturing. As shown in the preceding figure, the encoder receives
a (5,2) codeword, because it has been shortened from a (7,3) codeword by one symbol, and
one symbol has also been punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity
position of the codeword. This corresponds to the puncture vector 1011. Adding a zero
accounts for shortening, in the same way as shown in the preceding figure. The single
erasure does not exceed the erasure-correcting capability of the code, which can correct

6-32

Error Detection and Correction

four erasures. The decoding operation results in the three-symbol message DI;I,. The
first symbol is truncated, as in the preceding figure, yielding a final output of I, I,.

Decoder Example with Shortening, Puncturing, and Erasures.

The following figure shows the decoder operating on the punctured, shortened codeword,
while also correcting erasures generated by the receiver.

1,1,P P3P, !
—_— 1
(5,2 HEPPSE Depuncture HEPIEPSE 1 Add l

’ . Erase > > mi

: (1011) 6, 2) zeros :

01001 ! 5

E I, Dl l, Ol,EP,EPSE | !

- : Truncate |- Decode | ;
1 2-symbol 3-symbol (7,3) '

E shortened message i

' message ;

In this figure, demodulator receives the I;1,P,;PsP, vector that the encoder sent. The
demodulator declares that two of the five received symbols are unreliable enough to be
erased, such that symbols 2 and 5 are deemed to be erasures. The 01001 vector, provided
by an external source, indicates these erasures. Within the erasures vector, a 1 means
that the symbol is to be replaced with an erasure symbol, and a 0 means that the symbol
1s passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the
erasures indicated by the vector 01001. Within the erasures vector, a 1 means that the
symbol is to be replaced with an erasure symbol, and a 0 means that the symbol is passed
unaltered. The resulting codeword vector is I; EP;P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding
operation (i.e., 1011). Thus, an erasure symbol is inserted between P; and P, yielding a
codeword vector of [EP,EPsE.

6-33

6 System Design

6-34

Just prior to decoding, the addition of zeros at the beginning of the information vector
accounts for the shortening. The resulting vector is 0I; EP;EP3E, such that a (7,3)
codeword is sent to the Berlekamp algorithm.

This codeword is decoded, yielding a three-symbol message of DI I, (where D refers to a
dummy symbol). Finally, the removal of the D symbol from the message vector accounts
for the shortening and yields the original I;I, vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and
Shortening” on page 9-20 example.

Reed-Solomon Code in Integer Format

To open an example model that uses a Reed-Solomon code in integer format, type
doc_rscoding at the MATLAB command line. For more information about the model,
see “Example: Reed-Solomon Code in Integer Format” on page 6-24

Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the
cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The commands

genpolyCyclic = cyclpoly(15,5) % 1+X"5+X~10

genpolyBCH = bchgenpoly(15,5) % XMNLO+XN8+XN5+XNMA4XN2+Xx+1

genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.
genpolyCyclic =

1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.-
Array elements =

1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(274) array. Primitive polynomial = D™4+D+1 (19 decimal)
Array elements =

1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

Error Detection and Correction

+ cyclpoly represents a generator polynomial using an integer row vector that lists
the polynomial's coefficients in order of ascending powers of the variable.

* bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row
vector that lists the polynomial's coefficients in order of descending powers of the
variable.

* rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For
more information on the meaning of these coefficients, see “How Integers Correspond

to Galois Field Elements” on page 6-111 and “Polynomials over Galois Fields” on
page 6-130.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the
generator polynomial. The syntaxes for functions in the example above also include
options for retrieving generator polynomials that satisfy certain constraints that you
specify. See the functions' reference pages for details about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form

X - AM)X - AP...(X - AP*?Y) where A is a primitive element for an appropriate Galois
field, and b and t are integers. See the functions' reference pages for more information
about this expression.

Performing Other Block Code Tasks

This section describes functions that compute typical parameters associated with linear
block codes, as well as functions that convert information from one format to another.
The topics are

+ “Error Correction Versus Error Detection for Linear Block Codes” on page 6-35
* “Finding the Error-Correction Capability” on page 6-36
* “Finding Generator and Parity-Check Matrices” on page 6-36

+ “Converting Between Parity-Check and Generator Matrices” on page 6-36

Error Correction Versus Error Detection for Linear Block Codes

You can use a liner block code to detect d,,;, -1 errors or to correct ¢t = l:%(dmj - 1)}

errors.

6-35

6 System Design

6-36

If you compromise the error correction capability of a code, you can detect more than ¢
errors. For example, a code with d,,;, = 7 can correct ¢ = 3 errors or it can detect up to 4
errors and correct up to 2 errors.

Finding the Error-Correction Capability

The bchgenpoly and rsgenpoly functions can return an optional second output
argument that indicates the error-correction capability of a BCH or Reed-Solomon code.
For example, the commands

[g,t] = bchgenpoly(31,16);
:-
3
find that a [31, 16] BCH code can correct up to three errors in each codeword.
Finding Generator and Parity-Check Matrices

To find a parity-check and generator matrix for a Hamming code with codeword length
2”"m-1, use the hammgen function as below. m must be at least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen function.
You must provide the codeword length and a valid generator polynomial. You can use the
cyclpoly function to produce one possible generator polynomial after you provide the
codeword length and message length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic
Converting Between Parity-Check and Generator Matrices

The gen2par function converts a generator matrix into a parity-check matrix, and vice
versa. The reference page for gen2par contains examples to illustrate this.

Selected Bibliography for Block Coding

[1] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

Error Detection and Correction

[4] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed.,
Cambridge, MA, MIT Press, 1972.

[56] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, NJ, Prentice Hall, 1995.

[7] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA, MIT Press,
1963.

[8] Ryan, William E., “An introduction to LDPC codes,” Coding and Signal Processing for
Magnetic Recoding Systems (Vasic, B., ed.), CRC Press, 2004.

Convolutional Codes

+ “Convolutional Code Features” on page 6-37

* “Polynomial Description of a Convolutional Code” on page 6-39

+ “Trellis Description of a Convolutional Code” on page 6-41

+ “Create and Decode Convolutional Codes” on page 6-45

+ “Design a Rate-2/3 Feedforward Encoder Using MATLAB” on page 6-54
* “Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 6-55
+ “Puncture a Convolutional Code Using MATLAB” on page 6-58

* “Implement a Systematic Encoder with Feedback Using Simulink” on page 6-59
+ “Soft-Decision Decoding” on page 6-61

+ “Tailbiting Encoding Using Feedback Encoders” on page 6-68

+ “Selected Bibliography for Convolutional Coding” on page 6-69

Convolutional Code Features

Convolutional coding is a special case of error-control coding. Unlike a block coder,

a convolutional coder is not a memoryless device. Even though a convolutional coder
accepts a fixed number of message symbols and produces a fixed number of code symbols,
its computations depend not only on the current set of input symbols but on some of the
previous input symbols.

Communications System Toolbox provides convolutional coding capabilities as Simulink
blocks, System objects, and MATLAB functions. This product supports feedforward
and feedback convolutional codes that can be described by a trellis structure or a set of

6-37

6 System Design

generator polynomials. It uses the Viterbi algorithm to implement hard-decision and soft-
decision decoding.

The product also includes an a posteriori probability decoder, which can be used for soft
output decoding of convolutional codes.

For background information about convolutional coding, see the works listed in “Selected
Bibliography for Convolutional Coding” on page 6-69.

Block Parameters for Convolutional Coding

To process convolutional codes, use the Convolutional Encoder, Viterbi Decoder, and/or
APP Decoder blocks in the Convolutional sublibrary. If a mask parameter is required in
both the encoder and the decoder, use the same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two different
representations of a convolutional encoder:

+ If you design your encoder using a diagram with shift registers and modulo-2 adders,
you can compute the code generator polynomial matrix and subsequently use the
poly2trellis function (in Communications System Toolbox) to generate the
corresponding trellis structure mask parameter automatically. For an example, see
“Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 6-55.

+ If you design your encoder using a trellis diagram, you can construct the trellis
structure in MATLAB and use it as the mask parameter.

Details about these representations are in the sections “Polynomial Description of a
Convolutional Code” on page 6-39 and “Trellis Description of a Convolutional Code”
on page 6-41 in the Communications System Toolbox User's Guide.

Using the Polynomial Description in Blocks

To use the polynomial description with the Convolutional Encoder, Viterbi Decoder,

or APP Decoder blocks, use the utility function poly2trellis from Communications
System Toolbox. This function accepts a polynomial description and converts it into a
trellis description. For example, the following command computes the trellis description
of an encoder whose constraint length is 5 and whose generator polynomials are 35 and
31:

trellis = poly2trellis(5,[35 31]);

To use this encoder with one of the convolutional-coding blocks, simply place a
poly2trellis command such as

6-38

Error Detection and Correction

poly2trellis(5,[35 31]);
in the Trellis structure parameter field.
Polynomial Description of a Convolutional Code

A polynomial description of a convolutional encoder describes the connections among
shift registers and modulo 2 adders. For example, the figure below depicts a feedforward
convolutional encoder that has one input, two outputs, and two shift registers.

©

First output

Second output

A polynomial description of a convolutional encoder has either two or three components,
depending on whether the encoder is a feedforward or feedback type:

+ Constraint lengths
* Generator polynomials
+ Feedback connection polynomials (for feedback encoders only)

Constraint Lengths

The constraint lengths of the encoder form a vector whose length is the number of inputs
in the encoder diagram. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits.

In the figure above, the constraint length is three. It is a scalar because the encoder has
one input stream, and its value is one plus the number of shift registers for that input.

Generator Polynomials

If the encoder diagram has k inputs and n outputs, the code generator matrix is a k-
by-n matrix. The element in the ith row and jth column indicates how the ith input
contributes to the jth output.

6-39

6 System Design

6-40

For systematic bits of a systematic feedback encoder, match the entry in the code
generator matrix with the corresponding element of the feedback connection vector. See
“Feedback Connection Polynomials” on page 6-40 below for details.

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where a connection
line from the shift register feeds into the adder, and a 0 elsewhere. The leftmost
spot in the binary number represents the current input, while the rightmost spot
represents the oldest input that still remains in the shift register.

2 Convert this binary representation into an octal representation by considering
consecutive triplets of bits, starting from the rightmost bit. The rightmost bit in each
triplet is the least significant. If the number of bits is not a multiple of three, place
zero bits at the left end as necessary. (For example, interpret 1101010 as 001 101
010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower adders in the
figure above are 110 and 111, respectively. These binary numbers are equivalent to the
octal numbers 6 and 7, respectively, so the generator polynomial matrix is [6 7].

Note: You can perform the binary-to-octal conversion in MATLAB by using code like
str2num(dec2base(bin2dec(*1107),8)).

For a table of some good convolutional code generators, refer to [2] in the section
“Selected Bibliography for Block Coding” on page 6-36, especially that book's
appendices.

Feedback Connection Polynomials

If you are representing a feedback encoder, you need a vector of feedback connection
polynomials. The length of this vector is the number of inputs in the encoder diagram.
The elements of this vector indicate the feedback connection for each input, using an
octal format. First build a binary number representation as in step 1 above. Then convert
the binary representation into an octal representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, the code generator and
feedback connection parameters corresponding to the systematic bits must have the same
values.

For example, the diagram below shows a rate 1/2 systematic encoder with feedback.

Error Detection and Correction

First output (systematic)

»

Second output

This encoder has a constraint length of 5, a generator polynomial matrix of [37 33], and a
feedback connection polynomial of 37.

The first generator polynomial matches the feedback connection polynomial because the
first output corresponds to the systematic bits. The feedback polynomial is represented
by the binary vector [1 1 1 1 1], corresponding to the upper row of binary digits in the
diagram. These digits indicate connections from the outputs of the registers to the adder.
The initial 1 corresponds to the input bit. The octal representation of the binary number
11111 1s 37.

The second generator polynomial is represented by the binary vector [1 101 1],
corresponding to the lower row of binary digits in the diagram. The octal number
corresponding to the binary number 11011 is 33.

Using the Polynomial Description in MATLAB

To use the polynomial description with the functions convenc and vitdec, first convert
it into a trellis description using the poly2trellis function. For example, the command
below computes the trellis description of the encoder pictured in the section “Polynomial
Description of a Convolutional Code” on page 6-39.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trel lis is a suitable input argument for convenc and vitdec.
Trellis Description of a Convolutional Code

A trellis description of a convolutional encoder shows how each possible input to the

encoder influences both the output and the state transitions of the encoder. This section

6-41

6 System Design

6-42

describes trellises, and how to represent trellises in MATLAB, and gives an example of a
MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the previous section.
The encoder has four states (numbered in binary from 00 to 11), a one-bit input, and

a two-bit output. (The ratio of input bits to output bits makes this encoder a rate-1/2
encoder.) Each solid arrow shows how the encoder changes its state if the current input is
zero, and each dashed arrow shows how the encoder changes its state if the current input
is one. The octal numbers above each arrow indicate the current output of the encoder.

State State

00e—2 > 00

State transition when input is 0

- — — State fransition when input is 1

As an example of interpreting this trellis diagram, if the encoder is in the 10 state and
receives an input of zero, it outputs the code symbol 3 and changes to the 01 state. If it is
in the 10 state and receives an input of one, it outputs the code symbol 0 and changes to
the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent to
some trellis description, although some trellises have no corresponding polynomial
descriptions.

Specifying a Trellis in MATLAB

To specify a trellis in MATLAB, use a specific form of a MATLAB structure called a
trellis structure. A trellis structure must have five fields, as in the table below.

Fields of a Trellis Structure for a Rate k/n Code

Error Detection and Correction

Field in Trellis Structure Dimensions Meaning

numlnputSymbols Scalar Number of input symbols to
the encoder: 2*

numOutputsymbols Scalar Number of output symbols
from the encoder: 2"

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2* matrix Next states for all
combinations of current state
and current input

outputs numStates-by-25 matrix Outputs (in octal) for all

combinations of current state
and current input

Note: While your trellis structure can have any name, its fields must have the exact
names as in the table. Field names are case sensitive.

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The
element in the ith row and jth column denotes the next state when the starting state

1s i-1 and the input bits have decimal representation j-1. To convert the input bits to a
decimal value, use the first input bit as the most significant bit (MSB). For example, the
second column of the nextStates matrix stores the next states when the current set of
input values is {0,...,0,1}. To learn how to assign numbers to states, see the reference page

for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes the encoder's
output when the starting state is i-1 and the input bits have decimal representation j-1.
To convert to decimal value, use the first output bit as the MSB.

How to Create a MATLAB Trellis Structure

Once you know what information you want to put into each field, you can create a trellis
structure in any of these ways:

* Define each of the five fields individually, using structurename.fieldname
notation. For example, set the first field of a structure called s using the command
below. Use additional commands to define the other fields.

6-43

6 System Design

s_numlnputSymbols = 2;
The reference page for the istrellis function illustrates this approach.
* Collect all field names and their values in a single struct command. For example:

s = struct("numlnputSymbols*®,2, "numOutputSymbols®,2, ...
"numStates”,2, "nextStates”",[0 1;0 1], "outputs®,[0 0;1 1]);

+ Start with a polynomial description of the encoder and use the poly2trellis
function to convert it to a valid trellis structure. The polynomial description of a
convolutional encoder is described in “Polynomial Description of a Convolutional
Code” on page 6-39.

To check whether your structure is a valid trellis structure, use the istrellis function.
Example: A MATLAB Trellis Structure

Consider the trellis shown below.

State State

00— > 00

State transition when input is 0

- — — State transition when input is 1

To build a trellis structure that describes it, use the command below.

trellis = struct("numlnputSymbols®,2, "numOutputSymbols®,4, ...
"numStates”,4, "nextStates",[0 2;0 2;1 3;1 3],---
“outputs®,[O0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types of input
path: the solid arrow and the dashed arrow. The number of output symbols is 4 because
the numbers above the arrows can be either 0, 1, 2, or 3. The number of states is 4

6-44

Error Detection and Correction

because there are four bullets on the left side of the trellis diagram (equivalently,

four on the right side). To compute the matrix of next states, create a matrix whose
rows correspond to the four current states on the left side of the trellis, whose columns
correspond to the inputs of 0 and 1, and whose elements give the next states at the end
of the arrows on the right side of the trellis. To compute the matrix of outputs, create a
matrix whose rows and columns are as in the next states matrix, but whose elements
give the octal outputs shown above the arrows in the trellis.

Create and Decode Convolutional Codes

The functions for encoding and decoding convolutional codes are convenc and vitdec.
This section discusses using these functions to create and decode convolutional codes.

Encoding

A simple way to use convenc to create a convolutional code is shown in the commands
below.

Define a trellis.
t = poly2trellis([4 3].[4 5 17;7 4 2]);
Encode a vector of ones.

X = ones(100,1);
code = convenc(x,t);

The first command converts a polynomial description of a feedforward convolutional
encoder to the corresponding trellis description. The second command encodes 100 bits,
or 50 two-bit symbols. Because the code rate in this example is 2/3, the output vector
code contains 150 bits (that is, 100 input bits times 3/2).

To check whether your trellis corresponds to a catastrophic convolutional code, use the
iscatastrophic function.

Hard-Decision Decoding

To decode using hard decisions, use the vitdec function with the flag "hard® and with
binary input data. Because the output of convenc is binary, hard-decision decoding can
use the output of convenc directly, without additional processing. This example extends
the previous example and implements hard-decision decoding.

Define a trellis.

t = poly2trellis([4 3].[4 5 17;7 4 2]);

6-45

6 System Design

6-46

Encode a vector of ones.
code = convenc(ones(100,1),t);

Set the traceback length for decoding and decode using vitdec.

th = 2;
decoded = vitdec(code,t,tb,"trunc®, “hard");

Verify that the decoded data is a vector of 100 ones.

isequal (decoded,ones(100,1))

ans =
logical

1

Soft-Decision Decoding

To decode using soft decisions, use the vitdec function with the flag "soft". Specify the
number, nsdec, of soft-decision bits and use input data consisting of integers between 0
and 2”"nsdec-1.

An input of 0 represents the most confident 0, while an input of 2*nsdec-1 represents
the most confident 1. Other values represent less confident decisions. For example, the
table below lists interpretations of values for 3-bit soft decisions.

Input Values for 3-bit Soft Decisions

Input Value Interpretation

0 Most confident O

Second most confident 0

Third most confident O

Least confident 0

Least confident 1

Third most confident 1

| O | W | DN~

Second most confident 1

Error Detection and Correction

Input Value Interpretation
7 Most confident 1

Implement Soft-Decision Decoding Using MATLAB

The script below illustrates decoding with 3-bit soft decisions. First it creates a
convolutional code with convenc and adds white Gaussian noise to the code with awgn.
Then, to prepare for soft-decision decoding, the example uses quantiz to map the noisy
data values to appropriate decision-value integers between 0 and 7. The second argument
in quantiz is a partition vector that determines which data values map to 0, 1, 2, etc.
The partition is chosen so that values near 0 map to 0, and values near 1 map to 7.

(You can refine the partition to obtain better decoding performance if your application
requires it.) Finally, the example decodes the code and computes the bit error rate.

When comparing the decoded data with the original message, the example must take the
decoding delay into account. The continuous operation mode of vitdec causes a delay
equal to the traceback length, so msg(21) corresponds to decoded(tblen+1) rather than
to decoded(1).

s = RandStream.create("mt19937ar®, "seed®,94384);

prevStream = RandStream.setGlobalStream(s);

msg = randi([0 1],4000,1); % Random data

t = poly2trellis(7,[171 133]); % Define trellis.

% Create a ConvolutionalEncoder System object

hConvEnc = comm.ConvolutionalEncoder(t);

% Create an AWGNChannel System object.

hChan = comm.AWGNChannel ("NoiseMethod®, "Signal to noise ratio (SNR)",...

"SNR", 6);

% Create a ViterbiDecoder System object

hvitDec = comm.ViterbiDecoder(t, "InputFormat®, “"Soft", ...
"SoftlnputWordLength®, 3, "TracebackDepth®, 48, ...
"TerminationMethod®, "Continuous®);

% Create a ErrorRate Calculator System object. Account for the receive

% delay caused by the traceback length of the viterbi decoder.

hErrorCalc = comm._ErrorRate("ReceiveDelay”, 48);

ber = zeros(3,1); % Store BER values

code = step(hConvEnc,msg); % Encode the data.

hChan.SignalPower = (code”*code)/length(code);

ncode = step(hChan,code); % Add noise.

% Quantize to prepare for soft-decision decoding.
gcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length

6-47

6 System Design

decoded = step(hVitDec,qcode); % Decode.

% Compute bit error rate.

ber = step(hErrorCalc, msg, decoded);
ratio = ber(1)

number = ber(2)
RandStream.setGlobalStream(prevStream);

The output is below.
number =

5

ratio =
0.0013
Implement Soft-Decision Decoding Using Simulink

This example creates a rate 1/2 convolutional code. It uses a quantizer and the

Viterbi Decoder block to perform soft-decision decoding. To open the model, enter
doc_softdecision at the MATLAB command line. For a description of the model, see
Overview of the Simulation on page 6-61.

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

First output

Second output

The encoder's constraint length is a scalar since the encoder has one input. The value
of the constraint length is the number of bits stored in the shift register, including the

6-48

Error Detection and Correction

current input. There are six memory registers, and the current input is one bit. Thus the
constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input
and two outputs. The first element in the matrix indicates which input values contribute
to the first output, and the second element in the matrix indicates which input values
contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the
rightmost and the four leftmost elements in the diagram's array of input values. The
seven-digit binary number 1111001 captures this information, and is equivalent to

the octal number 171. The octal number 171 thus becomes the first entry of the code
generator matrix. Here, each triplet of bits uses the leftmost bit as the most significant
bit. The second output corresponds to the binary number 1011011, which is equivalent to
the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block

which code to use when processing data. In this case, the poly2trellis function, in
Communications System Toolbox, converts the constraint length and the pair of octal
numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream,
the encoded data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex
numbers that are close to -1 and 1. In order to reconstruct the original binary message,
the receiver part of the model must decode the convolutional code. The Viterbi
Decoder block in this model expects its input data to be integers between 0 and 7. The
demodulator, a custom subsystem in this model, transforms the received data into a
format that the Viterbi Decoder block can interpret properly. More specifically, the
demodulator subsystem

* Converts the received data signal to a real signal by removing its imaginary part. It
is reasonable to assume that the imaginary part of the received data does not contain
essential information, because the imaginary part of the transmitted data is zero
(ignoring small roundoff errors) and because the channel noise is not very powerful.

+ Normalizes the received data by dividing by the standard deviation of the noise
estimate and then multiplying by -1.

* Quantizes the normalized data using three bits.

6-49

6 System Design

The combination of this mapping and the Viterbi Decoder block's decision mapping
reverses the BPSK modulation that the BPSK Modulator Baseband block performs on
the transmitting side of this model. To examine the demodulator subsystem in more
detail, double-click the icon labeled Soft-Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values,
the Viterbi Decoder block decodes it. The block uses a soft-decision algorithm with 2°
different input values because the Decision type parameter is Soft Decision and the
Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block
requires input values between 0 and 2°-1, where b is the Number of soft decision bits
parameter. The block interprets 0 as the most confident decision that the codeword bit

is a 0 and interprets 2"-1 as the most confident decision that the codeword bit is a 1. The

values in between these extremes represent less confident decisions. The following table
lists the interpretations of the eight possible input values for this example.

Decision Value Interpretation

Most confident O

Second most confident 0

Third most confident O

Least confident O

Least confident 1

Third most confident 1

Second most confident 1

N O |0~ W INHO

Most confident 1

Traceback and Decoding Delay

6-50

The Traceback depth parameter in the Viterbi Decoder block represents the length of
the decoding delay. Typical values for a traceback depth are about five or six times the
constraint length, which would be 35 or 42 in this example. However, some hardware
implementations offer options of 48 and 96. This example chooses 48 because that is
closer to the targets (35 and 42) than 96 is.

Error Detection and Correction

Delay in Received Data

The Error Rate Calculation block's Receive delay parameter is nonzero because a

given message bit and its corresponding recovered bit are separated in time by a nonzero
amount of simulation time. The Receive delay parameter tells the block which elements
of its input signals to compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (49).

Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the
bit error rate that would theoretically result from unquantized decoding. The process
includes a few steps, described in these sections:

Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate P, of the convolutional code in this
model, you can use this estimate based on unquantized-decision decoding:

P < ZCde
a=f

In this estimate, cq is the sum of bit errors for error events of distance d, and fis the free
distance of the code. The quantity Py is the pairwise error probability, given by

P, = lerfc alRﬂ
2 N,

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function,
defined by

9 =
erfe(x) == I et dt

Jn!

Values for the coefficients cq and the free distance f are in published articles such as

Frenger, P., P. Orten, and T. Ottosson, "Convolution Codes with Optimum Distance
Spectrum," IEEE Communications Letters, vol. 3, pp. 317-319, November 1999. [3]. The
free distance for this code is f = 10.

6-51

6 System Design

The following commands calculate the values of P, for E,, /N, values in the range from 1
to 4, in increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 O 1404 0 11633 0 77433 0 502690 0, ...
3322763 0 21292910 0O 134365911 0 843425871 0];

% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29

P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.~(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates

6-52

You can efficiently vary the simulation parameters by using the sim function to run the
simulation from the MATLAB command line. For example, the following code calculates
the bit error rate at bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of
0.5 dB. It collects all bit error rates from these simulations in the matrix BERVec. It also
plots the bit error rates in a figure window along with the theoretical bounds computed in
the preceding code fragment.

Note First open the model by clicking here in the MATLAB Help browser. Then execute
these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;

semi logy(EbNoVec,Bounds, "bo" ,1,NaN, "r*");

xlabel ("Eb/No (dB)*"); ylabel("Bit Error Rate®);
title("Bit Error Rate (BER)");
legend("Theoretical bound on BER",*Actual BER");
axis([1 4 1e-5 1]);

hold on;

BERVec = []:
% Make the noise level variable.

Error Detection and Correction

set_param(“doc_softdecision/AWGN Channel”®, ...
"EsNodB*, "EbNodB+10*10g10(1/2)");

% Simulate multiple times.

for n = 1:length(EbNoVec)
EbNodB = EbNoVec(n);
sim("doc_softdecision”,5000000) ;
BERVec(n, :) = BER_Data;
semi logy(EbNoVec(n) ,BERVec(n,1),"r*"); % Plot point.
drawnow;

end

hold off;

Note The estimate for P, assumes that the decoder uses unquantized data, that is, an
infinitely fine quantization. By contrast, the simulation in this example uses 8-level (3-
bit) quantization. Because of this quantization, the simulated bit error rate is not quite
as low as the bound when the signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual
BER points might vary because the simulation involves random numbers.

JRISTEY
File Edit View Insert Tools Deskiop Window Help N
N dS (K RRO9EL-20E O
5 Bit Error Rate (BER)
10 T T T T T 3
o 2 Theoretical bound on BER
+ Actual BER 1
107 ¢ 3
E (8]
.*.
= 107k + E
o o
2 *
= 2
@ o0 ¢ 3
107k @ .
-:J&
i
1 1 1 1 1
1 1.5 2 25 3 35 4
Eb/MNo (dB)

6-53

6 System Design

Design a Rate-2/3 Feedforward Encoder Using MATLAB
The example below uses the rate 2/3 feedforward encoder depicted in this schematic. The

accompanying description explains how to determine the trellis structure parameter from
a schematic of the encoder and then how to perform coding using this encoder.

First output

First input

Second output

»

Second input

Third output

»

Determining Coding Parameters

6-54

The convenc and vitdec functions can implement this code if their parameters have
the appropriate values.

The encoder's constraint length is a vector of length 2 because the encoder has two
inputs. The elements of this vector indicate the number of bits stored in each shift
register, including the current input bits. Counting memory spaces in each shift register
in the diagram and adding one for the current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the
element in the ith row and jth column to indicate how the ith input contributes to the

jth output. For example, to compute the element in the second row and third column,

the leftmost and two rightmost elements in the second shift register of the diagram feed
into the sum that forms the third output. Capture this information as the binary number

Error Detection and Correction

1011, which is equivalent to the octal number 13. The full value of the code generator
matrix is [23 35 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc and vitdec
functions, use the poly2trellis function to convert those parameters into a trellis
structure. The command to do this is below.

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Define trellis.

Using the Encoder

Below 1s a script that uses this encoder.
len = 1000;

msg = randi([O0 1],2*len,1); % Random binary message of 2-bit symbols

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Trellis

% Create a ConvolutionalEncoder System object

hConvEnc = comm.ConvolutionalEncoder(trel);

% Create a ViterbiDecoder System object

hvitDec = comm.ViterbiDecoder(trel, "InputFormat®, “"hard",
"TracebackDepth®, 34, "TerminationMethod®, "Continuous®);

% Create a ErrorRate Calculator System object. Since each symbol represents

% two bits, the receive delay for this object is twice the traceback length

% of the viterbi decoder.

hErrorCalc = comm.ErrorRate("ReceiveDelay”, 68);

ber = zeros(3,1); % Store BER values

code = step(hConvEnc,msg); % Encode the message.

ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]1),2); % Add noise.

decoded = step(hVitDec, ncode); % Decode.

ber = step(hErrorCalc, msg, decoded);

convenc accepts a vector containing 2-bit symbols and produces a vector containing 3-
bit symbols, while vitdec does the opposite. Also notice that biterr ignores the first 68
elements of decoded. That is, the decoding delay is 68, which is the number of bits per
symbol (2) of the recovered message times the traceback depth value (34) in the vitdec
function. The first 68 elements of decoded are Os, while subsequent elements represent
the decoded messages.

Design a Rate 2/3 Feedforward Encoder Using Simulink
This example uses the rate 2/3 feedforward convolutional encoder depicted in the

following figure. The description explains how to determine the coding blocks' parameters

6-55

6 System Design

6-56

from a schematic of a rate 2/3 feedforward encoder. This example also illustrates the use
of the Error Rate Calculation block with a receive delay.
First output

»
>

First input

»

A

Second input

Third output

»

A

How to Determine Coding Parameters

The Convolutional Encoder and Viterbi Decoder blocks can implement this code if their
parameters have the appropriate values.

The encoder's constraint length is a vector of length 2 since the encoder has two inputs.
The elements of this vector indicate the number of bits stored in each shift register,
including the current input bits. Counting memory spaces in each shift register in the
diagram and adding one for the current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the
element in the ith row and jth column to indicate how the ith input contributes to the
jth output. For example, to compute the element in the second row and third column,
notice that the leftmost and two rightmost elements in the second shift register of the
diagram feed into the sum that forms the third output. Capture this information as the
binary number 1011, which is equivalent to the octal number 13. The full value of the
code generator matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the Convolutional
Encoder and Viterbi Decoder blocks, use the poly2trellis function to convert those
parameters into a trellis structure.

Error Detection and Correction

How to Simulate the Encoder

The following model simulates this encoder.

Hhnmmr

Bernoulli
Binary

Bernoulli Randam

Binary Generator

B T Emor Rate o
comvoluti e c -
- Conveluticnal -) . Calculation Ll
v Encoder v BSC Viterbi Decoder r
- . Emor Rate Calculation
- Binary Symmetric —— - -
Convelutional Viterbi Decoder Display

Channel
Encoder

To open the completed model, enter doc_convcoding at the MATLAB command line. To
build the model, gather and configure these blocks:

Bernoulli Binary Generator, in the Comm Sources library

+ Set Probability of a zero to .5.

+ Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

+ Set Sample time to .5.
* Check the Frame-based outputs check box.
Set Samples per frame to 2.

Convolutional Encoder

* Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).

Binary Symmetric Channel, in the Channels library

* Set Error probability to 0.02.

+ Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

Clear the Output error vector check box.
Viterbi Decoder

* Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
+ Set Decision type to Hard decision.

Error Rate Calculation, in the Comm Sinks library

Set Receive delay to 68.

6-57

6 System Design

+ Set Output data to Port.
* Check the Stop simulation check box.
Set Target number of errors to 100.

+ Display, in the Simulink Sinks library

* Drag the bottom edge of the icon to make the display big enough for three entries.

Connect the blocks as in the figure. From the model window's Simulation menu, select
Model Configuration parameters. In the Configuration Parameters dialog box, set
Stop time to Inf.

Notes on the Model

The matrix size annotations appear on the connecting lines only if you click the Display
menu and select Signals & Ports > Signal Dimensions. The encoder accepts a 2-

by-1 column vector and produces a 3-by-1 column vector, while the decoder does the
opposite. The Samples per frame parameter in the Bernoulli Binary Generator block is
2 because the block must generate a message word of length 2.

The Receive delay parameter in the Error Rate Calculation block is 68, which is the
vector length (2) of the recovered message times the Traceback depth value (34) in the
Viterbi Decoder block. If you examine the transmitted and received signals as matrices in
the MATLAB workspace, you see that the first 34 rows of the recovered message consist
of zeros, while subsequent rows are the decoded messages. Thus the delay in the received
signal is 34 vectors of length 2, or 68 samples.

Running the model produces display output consisting of three numbers: the error rate,
the total number of errors, and the total number of comparisons that the Error Rate
Calculation block makes during the simulation. (The first two numbers vary depending
on your Initial seed values in the Bernoulli Binary Generator and Binary Symmetric
Channel blocks.) The simulation stops after 100 errors occur, because Target number
of errors is set to 100 in the Error Rate Calculation block. The error rate is much less
than 0.02, the Error probability in the Binary Symmetric Channel block.

Puncture a Convolutional Code Using MATLAB

This example processes a punctured convolutional code. It begins by generating 30,000
random bits and encoding them using a rate-3/4 convolutional encoder with a puncture
pattern of [1 1 1 0 0 1]. The resulting vector contains 40,000 bits, which are mapped to
values of -1 and 1 for transmission. The punctured code, punctcode, passes through an

6-58

Error Detection and Correction

additive white Gaussian noise channel. Then vitdec decodes the noisy vector using the
"unquant” decision type.

Finally, the example computes the bit error rate and the number of bit errors.

len = 30000; msg = randi([O0 1], len, 1); % Random data

t = poly2trellis(7, [133 171]); % Define trellis.

% Create a ConvolutionalEncoder System object

hConvEnc = comm.ConvolutionalEncoder(t, ...
"PuncturePatternSource®, "Property”, ...
"PuncturePattern®, [1;1;1;0;0;1]);

% Create an AWGNChannel System object.

hChan = comm.AWGNChannel ("NoiseMethod®, "Signal to noise ratio (SNR)",...

"SNR*, 3);

% Create a ViterbiDecoder System object

hVitDec = comm.ViterbiDecoder(t, "InputFormat®, “Unquantized®, ...
"TracebackDepth®, 96, "TerminationMethod®, "Truncated®, ...
"PuncturePatternSource®, "Property”, ...
"PuncturePattern®, [1;1;1;0;0;1D);

% Create a ErrorRate Calculator System object.

hErrorCalc = comm.ErrorRate;

berP = zeros(3,1); berPE = berP; % Store BER values

punctcode = step(hConvEnc,msg); % Length is (2*len)*2/3.

tcode = 1-2*punctcode; % Map 0" bit to 1 and "1™ bit to -1

hChan.SignalPower = (tcode"*tcode)/length(tcode);

ncode = step(hChan,tcode); % Add noise.

% Decode the punctured code

decoded = step(hVitDec,ncode); % Decode.

berP = step(hErrorCalc, msg, decoded);% Bit error rate

% Erase the least reliable 100 symbols, then decode
release(hVitDec); reset(hErrorCalc)
hVitDec.ErasuresinputPort = true;

[dummy idx] = sort(abs(ncode));

erasures = zeros(size(ncode)); erasures(idx(1:100)) = 1;
decoded = step(hVitDec,ncode, erasures); % Decode.

berPE = step(hErrorCalc, msg, decoded);% Bit error rate

fprintf("Number of errors with puncturing: %d\n", berP(2))
fprintf("Number of errors with puncturing and erasures: %d\n", berPE(2))

Implement a Systematic Encoder with Feedback Using Simulink

This section explains how to use the Convolutional Encoder block to implement a
systematic encoder with feedback. A code is systematic if the actual message words

6-59

6 System Design

6-60

appear as part of the codewords. The following diagram shows an example of a
systematic encoder.

First output (systematic)

>

»

Second output

To implement this encoder, set the Trellis structure parameter in the Convolutional
Encoder block to poly2trellis(5, [37 33], 37). This setting corresponds to

* Constraint length: 5
* Generator polynomial pair: [37 33]
* Feedback polynomial: 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1], corresponding to
the upper row of binary digits. These digits indicate connections from the outputs of the
registers to the adder. The initial 1 corresponds to the input bit. The octal representation
of the binary number 11111 is 37.

To implement a systematic code, set the first generator polynomial to be the same as the
feedback polynomial in the Trellis structure parameter of the Convolutional Encoder
block. In this example, both polynomials have the octal representation 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1],
corresponding to the lower row of binary digits. The octal number corresponding to the
binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional Encoder
block, see “Polynomial Description of a Convolutional Code” on page 6-39 in the
Communications System Toolbox documentation.

Error Detection and Correction

Soft-Decision Decoding

This example creates a rate 1/2 convolutional code. It uses a quantizer and the Viterbi
Decoder block to perform soft-decision decoding. This description covers these topics:

+ “Overview of the Simulation” on page 6-61

* “Defining the Convolutional Code” on page 6-62
+ “Mapping the Received Data” on page 6-63

* “Decoding the Convolutional Code” on page 6-64
+ “Delay in Received Data” on page 6-65

+ “Comparing Simulation Results with Theoretical Results” on page 6-65

Overview of the Simulation

The model is in the following figure. To open the model, enter doc_softdecision at
the MATLAB command line. The simulation creates a random binary message signal,
encodes the message into a convolutional code, modulates the code using the binary
phase shift keying (BPSK) technique, and adds white Gaussian noise to the modulated
data in order to simulate a noisy channel. Then, the simulation prepares the received
data for the decoding block and decodes. Finally, the simulation compares the decoded
information with the original message signal in order to compute the bit error rate. The
Convolutional encoder is configured as a rate 1/2 encoder. For every 2 bits, the encoder
adds another 2 redundant bits. To accommodate this, and add the correct amount of
noise, the Eb/No (dB) parameter of the AWGN block is in effect halved by subtracting

10*1og10(2). The simulation ends after processing 100 bit errors or 107 message bits,
whichever comes first.

6-61

6 System Design

i O O B I L
Bermoulli > Convolutional > BESK
Binary Encoder

Elllarmulli Random Conmvolutional BPSK

Binary Generator Encoder Modulator

»| BER_Data Bassband

¥
T Emor Rate To Womspace AWGH W

C i —4 Channel
»

Emor Rate Calculation

¥

Display
}réépép Soft-Output
S i BPSK

Viterbi Decoder Demodulstar

Vierbi D ecoder Bateysiem

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

First output

Second output

»

The encoder's constraint length is a scalar since the encoder has one input. The value

of the constraint length is the number of bits stored in the shift register, including the
current input. There are six memory registers, and the current input is one bit. Thus the
constraint length of the code is 7.

6-62

Error Detection and Correction

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input
and two outputs. The first element in the matrix indicates which input values contribute
to the first output, and the second element in the matrix indicates which input values
contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the
rightmost and the four leftmost elements in the diagram's array of input values. The
seven-digit binary number 1111001 captures this information, and is equivalent to

the octal number 171. The octal number 171 thus becomes the first entry of the code
generator matrix. Here, each triplet of bits uses the leftmost bit as the most significant
bit. The second output corresponds to the binary number 1011011, which is equivalent to
the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block
which code to use when processing data. In this case, the poly2trellis function, in
Communications System Toolbox, converts the constraint length and the pair of octal
numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream,
the encoded data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex
numbers that are close to -1 and 1. In order to reconstruct the original binary message,
the receiver part of the model must decode the convolutional code. The Viterbi
Decoder block in this model expects its input data to be integers between 0 and 7. The
demodulator, a custom subsystem in this model, transforms the received data into a
format that the Viterbi Decoder block can interpret properly. More specifically, the
demodulator subsystem

+ Converts the received data signal to a real signal by removing its imaginary part. It
is reasonable to assume that the imaginary part of the received data does not contain
essential information, because the imaginary part of the transmitted data is zero
(ignoring small roundoff errors) and because the channel noise is not very powerful.

+ Normalizes the received data by dividing by the standard deviation of the noise
estimate and then multiplying by -1.

* Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block's decision mapping
reverses the BPSK modulation that the BPSK Modulator Baseband block performs on

6-63

6 System Design

6-64

the transmitting side of this model. To examine the demodulator subsystem in more
detail, double-click the icon labeled Soft-Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values,

the Viterbi Decoder block decodes it. The block uses a soft-decision algorithm with 2°
different input values because the Decision type parameter is Soft Decision and the
Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block
requires input values between 0 and 2°-1, where b is the Number of soft decision bits
parameter. The block interprets 0 as the most confident decision that the codeword bit

is a 0 and interprets 2"-1 as the most confident decision that the codeword bit is a 1. The
values in between these extremes represent less confident decisions. The following table
lists the interpretations of the eight possible input values for this example.

Decision Value Interpretation

Most confident O

Second most confident 0

Third most confident O

Least confident 0

Least confident 1

Third most confident 1

Second most confident 1

N | O~ | W N+ O

Most confident 1

Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents the length of
the decoding delay. Typical values for a traceback depth are about five or six times the
constraint length, which would be 35 or 42 in this example. However, some hardware
implementations offer options of 48 and 96. This example chooses 48 because that is
closer to the targets (35 and 42) than 96 is.

Error Detection and Correction

Delay in Received Data

The Error Rate Calculation block's Receive delay parameter is nonzero because a

given message bit and its corresponding recovered bit are separated in time by a nonzero
amount of simulation time. The Receive delay parameter tells the block which elements
of its input signals to compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (49).

Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the
bit error rate that would theoretically result from unquantized decoding. The process
includes a few steps, described in these sections:

Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate P, of the convolutional code in this
model, you can use this estimate based on unquantized-decision decoding:

P < ZCde
a=f

In this estimate, cq is the sum of bit errors for error events of distance d, and fis the free
distance of the code. The quantity Py is the pairwise error probability, given by

P, = lerfc alRﬂ
2 N,

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function,
defined by

erfe(x) = 2 I et dt

I,

Values for the coefficients cq and the free distance f are in published articles such as
Frenger, P., P. Orten, and Ottosson, “Convolutional Codes with Optimum Distance
Spectrum,” IEEE Communications vol. 3, pp. 317-319, November 1999. The free distance
for this code is f = 10.

6-65

6 System Design

6-66

The following commands calculate the values of P, for E,, /N, values in the range from 1
to 4, in increments of 0.5:

EbNoVec = [1:0.5:4.0];
R = 1/2;
% Errs is the vector of sums of bit errors for
% error events at distance d, for d from 10 to 29.
Errs = [36 0 211 O 1404 0 11633 0 77433 0 502690 0, ...
3322763 0 21292910 0O 134365911 0 843425871 0];

% P is the matrix of pairwise error probilities, for
% Eb/No values in EbNoVec and d from 10 to 29.
P = zeros(20,7); % Initialize.
for d = 10:29

P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.~(EbNoVec/10)));
end
% Bounds is the vector of upper bounds for the bit error
% rate, for Eb/No values in EbNoVec.
Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the
simulation from the MATLAB command line. For example, the following code calculates
the bit error rate at bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of
0.5 dB. It collects all bit error rates from these simulations in the matrix BERVec. It also
plots the bit error rates in a figure window along with the theoretical bounds computed in
the preceding code fragment.

Note First open the model by clicking here in the MATLAB Help browser. Then execute
these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.
figure;

semi logy(EbNoVec,Bounds, "bo" ,1,NaN, "r*");

xlabel ("Eb/No (dB)*"); ylabel("Bit Error Rate®);
title("Bit Error Rate (BER)");
legend("Theoretical bound on BER",*Actual BER");
axis([1 4 1e-5 1]);

hold on;

BERVec = []:
% Make the noise level variable.

Error Detection and Correction

set_param(“doc_softdecision/AWGN Channel”®, ...
"EsNodB*, "EbNodB+10*10g10(1/2)");

% Simulate multiple times.

for n = 1:length(EbNoVec)
EbNodB = EbNoVec(n);
sim("doc_softdecision”,5000000) ;
BERVec(n, :) = BER_Data;
semi logy(EbNoVec(n) ,BERVec(n,1),"r*"); % Plot point.
drawnow;

end

hold off;

Note The estimate for P, assumes that the decoder uses unquantized data, that is, an
infinitely fine quantization. By contrast, the simulation in this example uses 8-level (3-
bit) quantization. Because of this quantization, the simulated bit error rate is not quite
as low as the bound when the signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual
BER points might vary because the simulation involves random numbers.

JRISTEY
File Edit View Insert Tools Deskiop Window Help N
N dS (K RRO9EL-20E O
5 Bit Error Rate (BER)
10 T T T T T 3
o 2 Theoretical bound on BER
+ Actual BER 1
107 ¢ 3
E (8]
.*.
= 107k + E
o o
2 *
= 2
@ o0 ¢ 3
107k @ .
-:J&
i
1 1 1 1 1
1 1.5 2 25 3 35 4
Eb/MNo (dB)

6-67

6 System Design

6-68

Tailbiting Encoding Using Feedback Encoders

This example demonstrates Tailbiting encoding using feedback encoders. For feedback
encoders, the ending state depends on the entire block of data. To accomplish tailbiting,
you must calculate for a given information vector (of N bits), the initial state, that leads
to the same ending state after the block of data is encoded.

This is achieved in two steps:

+ The first step is to determine the zero-state response for a given block of data. The
encoder starts in the all-zeros state. The whole block of data is input and the output
bits are ignored. After N bits, the encoder is in a state Xy] From this state, we
calculate the corresponding initial state X, and initialize the encoder with X.

* The second step is the actual encoding. The encoder starts with the initial state X,
the data block is input and a valid codeword is output which conforms to the same
state boundary condition.

Refer to [8] for a theoretical calculation of the initial state X, from Xy ”! using state-

space formulation. This is a one-time calculation which depends on the block length and

in practice could be implemented as a look-up table. Here we determine this mapping
table by simulating all possible entries for a chosen trellis and block length.

\—Dlr‘
Bernculli Convoluticnal Convolutional
o Encoder Terminator [~] Encoder
Binary FSt Out IS5t F5t

Bernoulli Binary
Generator

¥

[[‘
o
I3
ol &
¥

Convelutional Lookws Convolutional

Encoder Encodert

To open the model, type doc_mtai lbiting wfeedback at the MATLAB command line.

function mapStValues = getMapping(blkLen, trellis)

% The function returns the mapping value for the given block
length and trellis to be used for determining the initial
state from the zero-state response.

% All possible combinations of the mappings
mapStValuesTab = perms(O:trellis_numStates-1);

Error Detection and Correction

% Loop over all the combinations of the mapping entries:
for 1 = 1l:length(mapStvValuesTab)
mapStValues = mapStValuesTab(i,:);

% Model parameterized for the Block length
sim("mtailbiting_wfeedback®);

% Check the boundary condition for each run
% iIf ending and starting states match, choose that mapping set
if unique(out)==
return
end
end

Selecting the returned mapStValues for the Table data parameter of the Direct
Lookup Table (n-D) block in the Lookup subsystem will perform tailbiting encoding
for the chosen block length and trellis.

Selected Bibliography for Convolutional Coding

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum Press, 1992.

[3] Frenger, P., P. Orten, and T. Ottosson, "Convolution Codes with Optimum Distance
Spectrum," IEEE Communications Letters, vol. 3, pp. 317-319, November 1999.
Linear Block Codes

+ “Represent Words for Linear Block Codes” on page 6-69
+ “Configure Parameters for Linear Block Codes” on page 6-73

* “Create and Decode Linear Block Codes” on page 6-77
Represent Words for Linear Block Codes

The cyclic, Hamming, and generic linear block code functionality in this product offers
you multiple ways to organize bits in messages or codewords. These topics explain the
available formats:

6-69

6 System Design

+ “Use MATLAB to Create Messages and Codewords in Binary Vector Format” on page

6-70

+ “Use MATLAB to Create Messages and Codewords in Binary Matrix Format” on page
6-71

+ “Use MATLAB to Create Messages and Codewords in Decimal Vector Format” on
page 6-72

To learn how to represent words for BCH or Reed-Solomon codes, see “Represent Words
for BCH Codes” on page 6-88 or “Represent Words for Reed-Solomon Codes” on page
6-95.

Use MATLAB to Create Messages and Codewords in Binary Vector Format

Your messages and codewords can take the form of vectors containing Os and 1s. For
example, messages and codes might look like msg and code in the lines below.
n==6; k =4; % Set codeword length and message length

% for a [6,4] code.

msg =[100110101011]"; % Message is a binary column.

code = encode(msg,n,k, "cyclic®); % Code will be a binary column.

msg*”

code*

The output is below.
ans =
Columns 1 through 5
1 0 0 1 1
Columns 6 through 10
0 1 0 1 0
Columns 11 through 12

1 1

ans =

Columns 1 through 5

6-70

Error Detection and Correction

1 1 1 0 0
Columns 6 through 10

1 0 0 1 0
Columns 11 through 15

1 0 0 1 1
Columns 16 through 18

0 1 1

In this example, msg consists of 12 entries, which are interpreted as three 4-digit
(because k = 4) messages. The resulting vector code comprises three 6-digit (because
n = 6) codewords, which are concatenated to form a vector of length 18. The parity bits
are at the beginning of each codeword.

Use MATLAB to Create Messages and Codewords in Binary Matrix Format

You can organize coding information so as to emphasize the grouping of digits into
messages and codewords. If you use this approach, each message or codeword occupies a
row in a binary matrix. The example below illustrates this approach by listing each 4-bit
message on a distinct row in msg and each 6-bit codeword on a distinct row in code.

n==6; k =4; % Set codeword length and message length.

msg [1001; 1010; 1011]; % Message is a binary matrix.
code = encode(msg,n,k, "cyclic®); % Code will be a binary matrix.
msg

code

The output is below.

msg =
1 0 0 1
1 0 1 0
1 0 1 1
code =

6-71

6 System Design

6-72

1 1 1 0 0 1
0 0 1 0 1 0
0 1 1 0 1 1

Note: In the binary matrix format, the message matrix must have k columns. The
corresponding code matrix has n columns. The parity bits are at the beginning of each
row.

Use MATLAB to Create Messages and Codewords in Decimal Vector Format

Your messages and codewords can take the form of vectors containing integers. Each
element of the vector gives the decimal representation of the bits in one message or one
codeword.

Note: If 27*n or 27k is very large, you should use the default binary format instead of the
decimal format. This is because the function uses a binary format internally, while the
roundoff error associated with converting many bits to large decimal numbers and back
might be substantial.

Note: When you use the decimal vector format, encode expects the leftmost bit to be the
least significant bit.

The syntax for the encode command must mention the decimal format explicitly, as in
the example below. Notice that /decimal is appended to the fourth argument in the
encode command.

n==6; k =4; % Set codeword length and message length.
msg = [9:;5;13]; % Message is a decimal column vector.
% Code will be a decimal vector.

code = encode(msg,n,k, "cyclic/decimal ™)

The output is below.
code =
39

20
54

Error Detection and Correction

Note: The three examples above used cyclic coding. The formats for messages and codes
are similar for Hamming and generic linear block codes.

Configure Parameters for Linear Block Codes
This subsection describes the items that you might need in order to process [n,k] cyclic,
Hamming, and generic linear block codes. The table below lists the items and the coding

techniques for which they are most relevant.

Parameters Used in Block Coding Techniques

Parameter Block Coding Technique
“Generator Matrix” on page 6-73 Generic linear block
“Parity-Check Matrix” on page 6-73 Generic linear block
“Generator Polynomial” on page 6-75 Cyeclic

“Decoding Table” on page 6-75 Generic linear block, Hamming
Generator Matrix

The process of encoding a message into an [n,k] linear block code is determined by a k-by-
n generator matrix G. Specifically, the 1-by-k message vector v is encoded into the 1-by-
n codeword vector vG. If G has the form [I; P] or [P I,], where P is some k-by-(n-k) matrix
and Iy is the k-by-k identity matrix, G is said to be in standard form. (Some authors,

e.g., Clark and Cain [2], use the first standard form, while others, e.g., Lin and Costello
[3], use the second.) Most functions in this toolbox assume that a generator matrix is in
standard form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check Matrix” on
page 6-73.

Parity-Check Matrix

Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix H. It
satisfies GH™ =0 (mod 2), where H" denotes the matrix transpose of H, G is the code's
generator matrix, and this zero matrix is k-by-(n-k). If G = [Ix P] then H = [-P" I,;]. Most

functions in this product assume that a parity-check matrix is in standard form when you
use it as an input argument.

6-73

6 System Design

Examples

6-74

The table below summarizes the standard forms of the generator and parity-check
matrices for an [n,k] binary linear block code.

Type of Matrix Standard Form Dimensions
Generator [Ix P] or [P L] k-by-n
Parity-check [-P® I,4] or [T, -P*] (n-k)-by-n

Iy is the identity matrix of size k and the * symbol indicates matrix transpose. (For

binary codes, the minus signs in the parity-check form listed above are irrelevant; that is,
-1 =1 in the binary field.)

In the command below, parmat is a parity-check matrix and genmat is a generator

matrix for a Hamming code in which [n,k] = [2°-1, n-3] = [7,4]. genmat has the standard
form [P I].

[parmat,genmat] = hammgen(3)

parmat =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
genmat =
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic code. The
cyclpoly function is mentioned below in “Generator Polynomial” on page 6-75.

genpoly = cyclpoly(7,3);
[parmat,genmat] = cyclgen(7,genpoly)

parmat =
1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

Error Detection and Correction

genmat =
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

The example below converts a generator matrix for a [5,3] linear block code into the
corresponding parity-check matrix.

genmat = [10010; 01011; 0010 1];
parmat = gen2par(genmat)
parmat =

1 1 0 1 0

0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a generator
matrix.

Generator Polynomial

Cyclic codes have algebraic properties that allow a polynomial to determine the coding
process completely. This so-called generator polynomial is a degree-(n-k) divisor of the
polynomial x"-1. Van Lint [5] explains how a generator polynomial determines a cyclic
code.

The cyclpoly function produces generator polynomials for cyclic codes. cyclpoly
represents a generator polynomial using a row vector that lists the polynomial's
coefficients in order of ascending powers of the variable. For example, the command

genpoly = cyclpoly(7,3)
genpoly =
1 0 1 1 1

finds that one valid generator polynomial for a [7,3] cyclic code is 1 + x* + x* + x*.

Decoding Table

A decoding table tells a decoder how to correct errors that might have corrupted the
code during transmission. Hamming codes can correct any single-symbol error in any

6-75

6 System Design

codeword. Other codes can correct, or partially correct, errors that corrupt more than one
symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and 2*(n-k)
rows. Each row gives a correction vector for one received codeword vector. A Hamming
decoding table has n+1 rows. The syndtable function generates a decoding table for a
given parity-check matrix.

Use a Decoding Table in MATLAB

6-76

The script below shows how to use a Hamming decoding table to correct an error in a
received message. The hammgen function produces the parity-check matrix, while the
syndtable function produces the decoding table. The transpose of the parity-check
matrix is multiplied on the left by the received codeword, yielding the syndrome. The
decoding table helps determine the correction vector. The corrected codeword is the sum
(modulo 2) of the correction vector and the received codeword.

% Use a [7,4] Hamming code.
m=3; n=2™M-1; kK = n-m;
parmat = hammgen(m); % Produce parity-check matrix.
trt = syndtable(parmat); % Produce decoding table.
recd =[1001111] % Suppose this is the received vector.
syndrome = rem(recd * parmat®,2);
syndrome_de = bi2de(syndrome, "left-msb"); % Convert to decimal.
disp(["Syndrome = *",num2str(syndrome_de), ...
* (decimal), ",num2str(syndrome),” (binary)"])
corrvect = trt(l+syndrome_de,:) % Correction vector
% Now compute the corrected codeword.
correctedcode = rem(corrvect+recd,?2)

The output is below.

recd =
1 0 0 1 1 1 1

Syndrome = 3 (decimal), 0 1 1 (binary)

corrvect =
0 0 0 0 1 0 0
correctedcode =

Error Detection and Correction

1 0 0 1 0 1 1
Create and Decode Linear Block Codes

The functions for encoding and decoding cyclic, Hamming, and generic linear block codes
are encode and decode. This section discusses how to use these functions to create and
decode generic linear block codes, cyclic codes, and Hamming codes.

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix. If you
have defined variables msg, n, k, and genmat, either of the commands

code
code

encode(msg,n,k, "linear”,genmat);
encode(msg,n,k, "linear/decimal* ,genmat);

encodes the information in msg using the [n,k] code that the generator matrix genmat
determines. The Zdecimal option, suitable when 2”*n and 2k are not very large,
indicates that msg contains nonnegative decimal integers rather than their binary
representations. See “Represent Words for Linear Block Codes” on page 6-69 or the
reference page for encode for a description of the formats of msg and code.

Decoding the code requires the generator matrix and possibly a decoding table. If you
have defined variables code, n, k, genmat, and possibly also trt, then the commands

newmsg = decode(code,n,k, "linear”,genmat);

newmsg = decode(code,n,k, "linear/decimal”,genmat);
newmsg = decode(code,n,k, "linear”,genmat,trt);

newmsg = decode(code,n,k, "linear/decimal”,genmat,trt);

decode the information in code, using the [n,K] code that the generator matrix genmat
determines. decode also corrects errors according to instructions in the decoding table
that trt represents.

Example: Generic Linear Block Coding

The example below encodes a message, artificially adds some noise, decodes the noisy
code, and keeps track of errors that the decoder detects along the way. Because the
decoding table contains only zeros, the decoder does not correct any errors.

n=4; k= 2;
genmat = [[1 1; 1 0], eye(2)]; % Generator matrix

6-77

6 System Design

6-78

msg = [0 1; 0 O0; 1 O0]; % Three messages, two bits each

% Create three codewords, four bits each.

code = encode(msg,n,k, " linear”,genmat);

noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.
trt = zeros(2*(n-k),n); % No correction of errors

% Decode, keeping track of all detected errors.

[newmsg,err] = decode(nhoisycode,n,k,"linear”,genmat,trt);
err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your results
might vary because this example uses random numbers as errors.

err_words =

1
2

Cyclic Codes

A cyclic code is a linear block code with the property that cyclic shifts of a codeword
(expressed as a series of bits) are also codewords. An alternative characterization of cyclic
codes 1s based on its generator polynomial, as mentioned in “Generator Polynomial” on
page 6-75 and discussed in [5].

Encoding a message using a cyclic code requires a generator polynomial. If you have
defined variables msg, n, k, and genpoly, then either of the commands

code
code

= encode(msg,n,k, "cyclic®,genpoly);

= encode(msg,n,k, "cyclic/decimal " ,genpoly);

encodes the information in msg using the [n,k] code determined by the generator
polynomial genpoly. genpoly is an optional argument for encode. The default
generator polynomial is cyclpoly(n,k). The /decimal option, suitable when 2”*n and
27k are not very large, indicates that msg contains nonnegative decimal integers rather
than their binary representations. See “Represent Words for Linear Block Codes” on
page 6-69 or the reference page for encode for a description of the formats of msg and
code.

Decoding the code requires the generator polynomial and possibly a decoding table. If you
have defined variables code, n, k, genpoly, and trt, then the commands

newmsg = decode(code,n,k,"cyclic”,genpoly);
newmsg = decode(code,n,k, "cyclic/decimal”,genpoly);
newmsg = decode(code,n,k,"cyclic”,genpoly,trt);

Error Detection and Correction

Example

newmsg = decode(code,n,k, "cyclic/decimal”,genpoly,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat
determines. decode also corrects errors according to instructions in the decoding table
that trt represents. genpoly is an optional argument in the first two syntaxes above.
The default generator polynomial is cyclpoly(n, k).

You can modify the example in the section “Generic Linear Block Codes” on page 6-77
so that it uses the cyclic coding technique, instead of the linear block code with the
generator matrix genmat. Make the changes listed below:

* Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x"2
* In the fifth and ninth lines (encode and decode commands), replace genmat by
genpoly and replace "linear® by "cyclic".

Another example of encoding and decoding a cyclic code is on the reference page for
encode.

Hamming Codes

The reference pages for encode and decode contain examples of encoding and decoding
Hamming codes. Also, the section “Decoding Table” on page 6-75 illustrates error
correction in a Hamming code.

Hamming Codes

+ “Create a Hamming Code in Binary Format Using Simulink” on page 6-79

+ “Reduce the Error Rate Using a Hamming Code” on page 6-80
Create a Hamming Code in Binary Format Using Simulink

This example shows very simply how to use an encoder and decoder. It illustrates the
appropriate vector lengths of the code and message signals for the coding blocks. Because
the Error Rate Calculation block accepts only scalars or frame-based column vectors as
the transmitted and received signals, this example uses frame-based column vectors
throughout. (It thus avoids having to change signal attributes using a block such as
Convert 1-D to 2-D.)

6-79

6 System Design

W Tx Emor Rate
imE NSy B==H B—8 :
Calculation
B i e e e Flc
;:I;zl:yl " Jamming Encods " lamming Decodd =
Emor Rate Calculation

Bernculli Random Hamming Encoder Hamming Decoder
Binary Generator

Open this model by entering doc_hamming at the MATLAB command line. To build the
model, gather and configure these blocks:

* Bernoulli Binary Generator, in the Comm Sources library

+ Set Probability of a zero to .5.

+ Set Initial seed to any positive integer scalar, preferably the output of the
randseed function.

Check the Frame-based outputs check box.
+ Set Samples per frame to 4.
* Hamming Encoder, with default parameter values
+ Hamming Decoder, with default parameter values

* Error Rate Calculation, in the Comm Sinks library, with default parameter values

Connect the blocks as in the preceding figure. Click the Display menu and select
Signals & Ports > Signal Dimensions. After updating the diagram if necessary
(Simulation > Update Diagram), the connector lines show relevant signal attributes.
The connector lines are double lines to indicate frame-based signals, and the annotations
next to the lines show that the signals are column vectors of appropriate sizes.

Reduce the Error Rate Using a Hamming Code

+ “Section Overview” on page 6-81

* “Building the Hamming Code Model” on page 6-81

+ “Using the Hamming Encoder and Decoder Blocks” on page 6-82
+ “Setting Parameters in the Hamming Code Model” on page 6-83
* “Labeling the Display Block” on page 6-83

* “Running the Hamming Code Model” on page 6-83

+ “Displaying Frame Sizes” on page 6-84

+ “Adding a Scope to the Model” on page 6-84

6-80

Error Detection and Correction

+ “Setting Parameters in the Expanded Model” on page 6-85
* “Observing Channel Errors with the Scope” on page 6-87

Section Overview

This section describes how to reduce the error rate by adding an error-correcting code.
The following figure shows an example that uses a Hamming code.

L]
T Error Rate

Bernoulli J={ Hamming &n ! BsC J={ Hamming de J{ R Caleulation

Binary Error Rate Caleulation
Bemoulli Binany Hamming Encoder Binary Symmetric Hamming Decoder Display

Generator Channel

Hamming Code Model

To open a complete version of the model, type doc_hamming at the MATLAB prompt.
Building the Hamming Code Model

You can build the Hamming code model by following these steps:

1 Type doc_channel at the MATLAB prompt to open the channel noise model. Then
save the model as my _hamming in the folder where you keep your work files.

2 Drag the following blocks from the Simulink Library Browser into the model
window:

Hamming Encoder block, from the Block sublibrary of the Error Detection and
Correction library

Hamming Decoder block, from the Block sublibrary of the Error Detection and
Correction library

3 Click the right border of the model and drag it to the right to widen the model
window.

4 Move the Binary Symmetric Channel block, the Error Rate Calculation block, and
the Display block to the right by clicking and dragging. This creates more space
between the Binary Symmetric Channel block and the blocks next to it. The model
should now look like the following figure.

6-81

6 System Design

6-82

L L 9
T Error Rate
I= el . -
Bernoulli BEC | R Calculation
Enay Eror Rate Caleulation
Bernoulli Binany Binary Symmetric Dizplay

Generatar Channel

5 Click the Hamming Encoder block and drag it on top of the line between the
Bernoulli Binary Generator block and the Binary Symmetric Channel block, to the
right of the branch point, as shown in the following figure. Then release the mouse
button. The Hamming Encoder block should automatically connect to the line from
the Bernoulli Binary Generator block to the Binary Symmetric Channel block.

Baarmmr =T
B > BSC —
Binany %

Bernoulli Binary Binary Symmetric
Generator Channel

6 Click the Hamming Decoder block and drag it on top of the line between the Binary
Symmetric Channel block and the Error Rate Calculation block.

Using the Hamming Encoder and Decoder Blocks

The Hamming Encoder block encodes the data before it is sent through the channel. The
default code is the [7,4] Hamming code, which encodes message words of length 4 into
codewords of length 7. As a result, the block converts frames of size 4 into frames of size
7. The code can correct one error in each transmitted codeword.

For an [n,k] code, the input to the Hamming Encoder block must consist of vectors of size
k. In this example, k = 4.

The Hamming Decoder block decodes the data after it is sent through the channel. If
at most one error is created in a codeword by the channel, the block decodes the word
correctly. However, if more than one error occurs, the Hamming Decoder block might
decode incorrectly.

To learn more about the Communications System Toolbox block coding features, see
“Block Codes” on page 6-19in the online documentation.

Error Detection and Correction

Setting Parameters in the Hamming Code Model

Double-click the Bernoulli Binary Generator block and make the following changes to the
parameter settings in the block's dialog box, as shown in the following figure:

Select the box next to Frame-based outputs.

2 Set Samples per frame to 4. This converts the output of the block into frames of
size 4, in order to meet the input requirement of the Hamming Encoder Block. See
“Sample-Based and Frame-Based Processing” on page 2-4 for more information
about frames.

=)

Frobability of & zero:
jos

Initial seed:
]

Sample time:
1

¥ Frame-based cutputs

Samples per frame:
|4

™| Interpret vecton parameters as 1-0

Note Many blocks, such as the Hamming Encoder block, require their input to be a
vector of a specific size. If you connect a source block, such as the Bernoulli Binary
Generator block, to one of these blocks, select the box next to Frame-based outputs
in the dialog for the source, and set Samples per frame to the required value.

Labeling the Display Block

You can change the label that appears below a block to make it more informative. For
example, to change the label below the Display block to “Error Rate Display,” first select
the label with the mouse. This causes a box to appear around the text. Enter the changes
to the text in the box.

Running the Hamming Code Model

To run the model, select Simulation > Start. The model terminates after 100
errors occur. The error rate, displayed in the top window of the Display block, is
approximately .001. You get slightly different results if you change the Initial seed
parameters in the model or run a simulation for a different length of time.

6-83

6 System Design

6-84

You expect an error rate of approximately .001 for the following reason: The probability
of two or more errors occurring in a codeword of length 7 is

1—(0.99)" — 7(0.99)%(0.01) = 0.002

If the codewords with two or more errors are decoded randomly, you expect about half the
bits in the decoded message words to be incorrect. This indicates that .001 is a reasonable
value for the bit error rate.

To obtain a lower error rate for the same probability of error, try using a Hamming
code with larger parameters. To do this, change the parameters Codeword length
and Message length in the Hamming Encoder and Decoder block dialog boxes. You
also have to make the appropriate changes to the parameters of the Bernoulli Binary
Generator block and the Binary Symmetric Channel block.

Displaying Frame Sizes

You can display the sizes of data frames in different parts of the model by clicking the
Display menu and selecting Signals & Ports > Signal Dimensions. The line leading
out of the Bernoulli Binary Generator block is labeled [4x1], indicating that its output
consists of column vectors of size 4. Because the Hamming Encoder block uses a [7,4]
code, it converts frames of size 4 into frames of size 7, so its output is labeled [7x1].

\LTX |—D|

[4e1] Error Rate 3
il Rt Caloulation L

B =] iz gl
Bernaulli kedl Hamming en FI”‘; BSC [fx1] :

Binany E]

Hamming de

- - Errer Rate Caleulation
Bernoulli Binany Hamming Encoder Binary Symmetric Hamming Decoder Dizplay
Generator Channel

Displaying Frame Sizes

Adding a Scope to the Model

To display the channel errors produced by the Binary Symmetric Channel block, add a
Scope block to the model. This is a good way to see whether your model is functioning
correctly. The example shown in the following figure shows where to insert the Scope
block into the model.

Error Detection and Correction

Bernoulli
Binany

-
L

Bernoulli Binanr
Generator

Hamming &n o

BSC ™

Em

Hamming de

L

Hamming Encoder

Binany Symmetric Hamming Decode
Channel

| B

Errar Rate

Calculation
3

L 9

Error Rate Calculatio

Dizplay

Channel Errors

2=
-

o1

Relational
Operator

L J

[

Unbuffer

[

Scope

Uncarrected Errors

Unbuffer

To build this model from the one shown in the figure Hamming Code Model, follow these

steps:

1 Drag the following blocks from the Simulink Library Browser into the model
window:

Relational Operator block, from the Simulink Logic and Bit Operations library

Scope block, from the Simulink Sinks library

Two copies of the Unbuffer block, from the Buffers sublibrary of the Signal
Management library in DSP System Toolbox

2 Double-click the Binary Symmetric Channel block to open its dialog box, and select
Output error vector. This creates a second output port for the block, which carries
the error vector.

3 Double-click the Scope block and click the Parameters button Ei on the toolbar. Set
Number of axes to 2 and click OK.

4 Connect the blocks as shown in the preceding figure.

Setting Parameters in the Expanded Model

Make the following changes to the parameters for the blocks you added to the model.

Error Rate Calculation Block

Double-click the Error Rate Calculation block and clear the box next to Stop simulation
in the block's dialog box.

6-85

6 System Design

Scope Block

The Scope block displays the channel errors and uncorrected errors. To configure the
block,

1 Double-click the block to open the scope, if it is not already open.

2 Click the Parameters button B on the toolbar.

3 Set Time range to 5000.

4 Click the Data history tab.

5 Type 30000 in the Limit data points to last field, and click OK.

The scope should now appear as shown.

leETe e & BB

5000

To configure the axes, follow these steps:

Right-click the vertical axis at the left side of the upper scope.
In the context menu, select Axes properties.

In the Y-min field, type -1.

In the Y-max field, type 2, and click OK.

Repeat the same steps for the vertical axis of the lower scope.

o 0 A WD —

Widen the scope window until it is roughly three times as wide as it is high. You can
do this by clicking the right border of the window and dragging the border to the
right, while pressing the mouse button.

6-86

Error Detection and Correction

Relational Operator

Set Relational Operator to ~= in the block's dialog box. The Relational Operator block
compares the transmitted signal, coming from the Bernoulli Random Generator block,
with the received signal, coming from the Hamming Decoder block. The block outputs a 0
when the two signals agree and a 1 when they disagree.

Observing Channel Errors with the Scope

When you run the model, the Scope block displays the error data. At the end of each 5000
time steps, the scope appears as shown in the following figure. The scope then clears the
displayed data and displays the next 5000 data points.

1000 1500 2000 2800 3000 3500 4000 4500 B000

1000 1500 2000 2800 3000 3500 4000 4500 B000

Scope with Model Running

The upper scope shows the channel errors generated by the Binary Symmetric Channel
block. The lower scope shows errors that are not corrected by channel coding.

Click the Stop button on the toolbar at the top of the model window to stop the scope.

To zoom in on the scope so that you can see individual errors, first click the middle
magnifying glass button at the top left of the Scope window. Then click one of the lines in
the lower scope. This zooms in horizontally on the line. Continue clicking the lines in the
lower scope until the horizontal scale is fine enough to detect individual errors. A typical
example of what you might see is shown in the figure below.

6-87

6 System Design

6-88

Channel emors

2535

Uncorected errars

Zooming